Mogilner Alex
Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA, 95618, USA.
J Math Biol. 2009 Jan;58(1-2):105-34. doi: 10.1007/s00285-008-0182-2. Epub 2008 May 7.
Mathematical and computational modeling is rapidly becoming an essential research technique complementing traditional experimental biological methods. However, lack of standard modeling methods, difficulties of translating biological phenomena into mathematical language, and differences in biological and mathematical mentalities continue to hinder the scientific progress. Here we focus on one area-cell motility-characterized by an unusually high modeling activity, largely due to a vast amount of quantitative, biophysical data, 'modular' character of motility, and pioneering vision of the area's experimental leaders. In this review, after brief introduction to biology of cell movements, we discuss quantitative models of actin dynamics, protrusion, adhesion, contraction, and cell shape and movement that made an impact on the process of biological discovery. We also comment on modeling approaches and open questions.
数学和计算建模正迅速成为一种重要的研究技术,对传统的实验生物学方法起到补充作用。然而,缺乏标准的建模方法、将生物现象转化为数学语言的困难,以及生物学和数学思维方式的差异,仍在阻碍科学进步。在此,我们聚焦于一个领域——细胞运动,其具有异常高的建模活跃度,这主要归因于大量的定量生物物理数据、运动的“模块化”特征,以及该领域实验带头人的开拓性视野。在这篇综述中,在简要介绍细胞运动生物学之后,我们讨论了肌动蛋白动力学、突出、黏附、收缩以及细胞形状和运动的定量模型,这些模型对生物学发现过程产生了影响。我们还对建模方法和悬而未决的问题进行了评论。