Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
IEEE Trans Med Imaging. 2010 Jun;29(6):1260-74. doi: 10.1109/TMI.2010.2044045. Epub 2010 Mar 18.
We propose a probabilistic model for analyzing spatial activation patterns in multiple functional magnetic resonance imaging (fMRI) activation images such as repeated observations on an individual or images from different individuals in a clinical study. Instead of taking the traditional approach of voxel-by-voxel analysis, we directly model the shape of activation patterns by representing each activation cluster in an image as a Gaussian-shaped surface. We assume that there is an unknown true template pattern and that each observed image is a noisy realization of this template. We model an individual image using a mixture of experts model with each component representing a spatial activation cluster. Taking a nonparametric Bayesian approach, we use a hierarchical Dirichlet process to extract common activation clusters from multiple images and estimate the number of such clusters automatically. We further extend the model by adding random effects to the shape parameters to allow for image-specific variation in the activation patterns. Using a Bayesian framework, we learn the shape parameters for both image-level activation patterns and the template for the set of images by sampling from the posterior distribution of the parameters. We demonstrate our model on a dataset collected in a large multisite fMRI study.
我们提出了一个概率模型,用于分析多个功能磁共振成像 (fMRI) 激活图像中的空间激活模式,例如对个体的重复观察或临床研究中不同个体的图像。我们没有采用传统的体素分析方法,而是通过将图像中的每个激活簇表示为高斯形状的表面,直接对激活模式的形状进行建模。我们假设存在未知的真实模板模式,并且每个观察到的图像都是该模板的噪声实现。我们使用专家混合模型对单个图像进行建模,每个分量代表一个空间激活簇。采用非参数贝叶斯方法,我们使用层次狄利克雷过程从多个图像中提取共同的激活簇,并自动估计此类簇的数量。我们通过向形状参数添加随机效应来进一步扩展模型,以允许激活模式在图像上具有特定的变化。我们使用贝叶斯框架通过从参数的后验分布中采样来学习图像级激活模式和一组图像的模板的形状参数。我们在一个在大型多站点 fMRI 研究中收集的数据集上演示了我们的模型。