Suppr超能文献

碳纳米管连接的铂纳米球电化学葡萄糖生物传感器

Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

作者信息

Claussen Jonathan C, Kim Sungwon S, Haque Aeraj Ul, Artiles Mayra S, Porterfield D Marshall, Fisher Timothy S

机构信息

Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057 , USA.

出版信息

J Diabetes Sci Technol. 2010 Mar 1;4(2):312-9. doi: 10.1177/193229681000400211.

Abstract

BACKGROUND

Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity.

METHOD

Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing.

RESULTS

Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes.

CONCLUSIONS

The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing.

摘要

背景

由碳纳米管(CNT)和金属纳米颗粒等纳米材料组成的葡萄糖生物传感器具有增强的电化学性能,可实现高灵敏度的葡萄糖传感。本文介绍了一种简便的生物传感器制造和生物功能化程序,该程序利用电化学修饰有铂(Pt)纳米球的碳纳米管以高灵敏度安培法检测葡萄糖。

方法

通过微波等离子体化学气相沉积(MPCVD)原位生长碳纳米管,并用电化学方法用Pt纳米球修饰,以形成CNT/Pt纳米球复合生物传感器。用荧光标记的牛血清白蛋白(BSA)固定碳纳米管电极,并用荧光显微镜分析以证明其生物相容性。通过简单的滴涂法将葡萄糖氧化酶(GO(X))固定在CNT/Pt纳米球生物传感器上,用于安培法葡萄糖传感。

结果

荧光显微镜通过描绘荧光标记的BSA在MPCVD生长的CNT电极上的吸附,证明了传感器的生物功能化能力。随后的GO(X)-CNT/Pt纳米球生物传感器对H₂O₂(7.4 μA/mM/cm²)和葡萄糖(70 μA/mM/cm²)具有高灵敏度,葡萄糖检测限和响应时间分别为380 nM(信噪比 = 3)和8 s(t(90%))。生物传感器的表观米氏常数(0.64 mM)也反映了固定化的GO(X)/纳米材料复合物的灵敏度提高。

结论

GO(X)-CNT/Pt纳米球生物传感器在葡萄糖灵敏度和检测限方面优于类似的CNT、金属纳米颗粒和更传统的碳基生物传感器。生物传感器的制造和生物功能化方案可以很容易地扩大规模,并适用于需要高灵敏度葡萄糖传感的生理研究应用的微传感器。

相似文献

1
Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.
J Diabetes Sci Technol. 2010 Mar 1;4(2):312-9. doi: 10.1177/193229681000400211.
2
Platinum nanoparticles-doped sol-gel/carbon nanotubes composite electrochemical sensors and biosensors.
Biosens Bioelectron. 2006 Jan 15;21(7):1125-31. doi: 10.1016/j.bios.2005.04.009.
3
Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes.
Anal Chem. 2004 Feb 15;76(4):1083-8. doi: 10.1021/ac035143t.
4
Amperometric glucose biosensor based on glucose oxidase-lectin biospecific interaction.
Enzyme Microb Technol. 2013 Mar 5;52(3):134-40. doi: 10.1016/j.enzmictec.2012.12.005. Epub 2012 Dec 28.
6
The construction of glucose biosensor based on platinum nanoclusters-multiwalled carbon nanotubes nanocomposites.
Appl Biochem Biotechnol. 2012 Feb;166(4):889-902. doi: 10.1007/s12010-011-9478-6. Epub 2012 Jan 4.
7
10
Pt nanoparticle-based highly sensitive platform for the enzyme-free amperometric sensing of H2O2.
Biosens Bioelectron. 2009 Jul 15;24(11):3264-8. doi: 10.1016/j.bios.2009.04.015. Epub 2009 Apr 17.

引用本文的文献

1
Metal Nanocomposites as Biosensors for Biological Fluids Analysis.
Materials (Basel). 2025 Apr 15;18(8):1809. doi: 10.3390/ma18081809.
3
A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose.
Biosensors (Basel). 2019 Mar 25;9(1):46. doi: 10.3390/bios9010046.
6
Managing diabetes with nanomedicine: challenges and opportunities.
Nat Rev Drug Discov. 2015 Jan;14(1):45-57. doi: 10.1038/nrd4477. Epub 2014 Nov 28.
7
Nanomaterial-mediated Biosensors for Monitoring Glucose.
J Diabetes Sci Technol. 2014 Mar;8(2):403-411. doi: 10.1177/1932296814522799. Epub 2014 Mar 2.
8
A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport.
Biosens Bioelectron. 2011 Jan 15;26(5):2237-45. doi: 10.1016/j.bios.2010.09.041. Epub 2010 Sep 29.

本文引用的文献

3
Functionalization of single-walled carbon nanotubes.
Angew Chem Int Ed Engl. 2002 Jun 3;41(11):1853-9. doi: 10.1002/1521-3773(20020603)41:11<1853::aid-anie1853>3.0.co;2-n.
4
Electrochemical biosensor of nanocube-augmented carbon nanotube networks.
ACS Nano. 2009 Jan 27;3(1):37-44. doi: 10.1021/nn800682m.
5
Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis.
Biosens Bioelectron. 2007 Mar 15;22(8):1749-55. doi: 10.1016/j.bios.2006.08.003. Epub 2006 Sep 11.
7
Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: Direct electron transfer and electrocatalysis.
Bioelectrochemistry. 2006 Oct;69(2):158-63. doi: 10.1016/j.bioelechem.2006.01.001. Epub 2006 Feb 23.
8
Diabetes and stroke: part one--risk factors and pathophysiology.
Curr Cardiol Rep. 2006 Feb;8(1):23-8. doi: 10.1007/s11886-006-0006-1.
9
New electrodes for old: from carbon nanotubes to edge plane pyrolytic graphite.
Analyst. 2006 Jan;131(1):15-21. doi: 10.1039/b512688f.
10
The use of nanoparticles in electroanalysis: a review.
Anal Bioanal Chem. 2006 Feb;384(3):601-19. doi: 10.1007/s00216-005-0230-3. Epub 2006 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验