Claussen Jonathan C, Kim Sungwon S, Haque Aeraj Ul, Artiles Mayra S, Porterfield D Marshall, Fisher Timothy S
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907-2057 , USA.
J Diabetes Sci Technol. 2010 Mar 1;4(2):312-9. doi: 10.1177/193229681000400211.
Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity.
Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing.
Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes.
The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing.
由碳纳米管(CNT)和金属纳米颗粒等纳米材料组成的葡萄糖生物传感器具有增强的电化学性能,可实现高灵敏度的葡萄糖传感。本文介绍了一种简便的生物传感器制造和生物功能化程序,该程序利用电化学修饰有铂(Pt)纳米球的碳纳米管以高灵敏度安培法检测葡萄糖。
通过微波等离子体化学气相沉积(MPCVD)原位生长碳纳米管,并用电化学方法用Pt纳米球修饰,以形成CNT/Pt纳米球复合生物传感器。用荧光标记的牛血清白蛋白(BSA)固定碳纳米管电极,并用荧光显微镜分析以证明其生物相容性。通过简单的滴涂法将葡萄糖氧化酶(GO(X))固定在CNT/Pt纳米球生物传感器上,用于安培法葡萄糖传感。
荧光显微镜通过描绘荧光标记的BSA在MPCVD生长的CNT电极上的吸附,证明了传感器的生物功能化能力。随后的GO(X)-CNT/Pt纳米球生物传感器对H₂O₂(7.4 μA/mM/cm²)和葡萄糖(70 μA/mM/cm²)具有高灵敏度,葡萄糖检测限和响应时间分别为380 nM(信噪比 = 3)和8 s(t(90%))。生物传感器的表观米氏常数(0.64 mM)也反映了固定化的GO(X)/纳米材料复合物的灵敏度提高。
GO(X)-CNT/Pt纳米球生物传感器在葡萄糖灵敏度和检测限方面优于类似的CNT、金属纳米颗粒和更传统的碳基生物传感器。生物传感器的制造和生物功能化方案可以很容易地扩大规模,并适用于需要高灵敏度葡萄糖传感的生理研究应用的微传感器。