Armstrong David G, Orgill Dennis P, Galiano Robert D, Glat Paul, Kaufman Jarrod, Mehr Marco, Zelen Charles M
Southwestern Academic Limb Salvage Alliance (SALSA), Keck School of Medicine of University of Southern California, Los Angeles, Calif.
Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.
Plast Reconstr Surg Glob Open. 2021 May 21;9(5):e3596. doi: 10.1097/GOX.0000000000003596. eCollection 2021 May.
Biomaterial engineering has produced numerous matrices for use in tissue repair, utilizing various materials and processing methods, which can impact the ability of the products to encourage wound healing. Recently, we observed favorable clinical outcomes, using a novel purified reconstituted bilayer matrix (PRBM; Geistlich Derma-Gide) to treat chronic diabetic foot ulcers.
Evaluations of the structural and functional characteristics of PRBM in vitro were performed to assess how this biomaterial may affect the favorable clinical results observed by influencing the wound environment and key physiologic mechanisms necessary for the healing process. Investigations included scanning electron microscopy, cell culture analyses, gene expression assays, matrix metalloproteinase activity assessment, and pH measurement.
Cross-sectional scanning electron microscopy demonstrated a distinct bilayer structure with porous and compact layers. The PRBM structure allowed cell types involved in wound healing to bind and proliferate. Expression analysis of growth factor-responsive genes demonstrated binding and preservation of bioactive growth factors TGF-β1, bFGF, and VEGF by PRBM. Boyden chamber migration assays revealed increased cellular migration compared with controls. In the presence of PRBM, the activity of MMP-1, MMP-2, and MMP-9 was significantly lower compared with control samples. pH of the PRBM in solution was slightly acidic.
Based on in vitro evaluations, it appears that the PRBM processing without deleterious chemical crosslinking results in a suitable ECM possessing characteristics to aid natural wound healing, including cell attachment, migration, proliferation, differentiation, and angiogenesis. These in vitro data support the promising healing rate observed clinically when chronic DFUs are treated with PRBM.
生物材料工程利用各种材料和加工方法生产了大量用于组织修复的基质,这可能会影响产品促进伤口愈合的能力。最近,我们使用一种新型纯化重组双层基质(PRBM; Geistlich Derma-Gide)治疗慢性糖尿病足溃疡,观察到了良好的临床效果。
对PRBM的结构和功能特性进行体外评估,以评估这种生物材料如何通过影响伤口环境和愈合过程所需的关键生理机制来影响所观察到的良好临床结果。研究包括扫描电子显微镜、细胞培养分析、基因表达测定、基质金属蛋白酶活性评估和pH测量。
横断面扫描电子显微镜显示出具有多孔层和致密层的独特双层结构。PRBM结构允许参与伤口愈合的细胞类型结合和增殖。生长因子反应基因的表达分析表明,PRBM可结合并保留生物活性生长因子TGF-β1、bFGF和VEGF。Boyden小室迁移试验显示,与对照组相比,细胞迁移增加。在PRBM存在的情况下,MMP-1、MMP-2和MMP-9的活性明显低于对照样品。PRBM在溶液中的pH值呈微酸性。
基于体外评估,似乎未经有害化学交联的PRBM加工产生了一种合适的细胞外基质,具有有助于自然伤口愈合的特性,包括细胞附着、迁移、增殖、分化和血管生成。这些体外数据支持了临床上用PRBM治疗慢性糖尿病足溃疡时观察到的有前景的愈合率。