Suppr超能文献

细胞代谢动力学的计算模型:胰岛素对人体骨骼肌葡萄糖摄取的影响。

Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1198-209. doi: 10.1152/ajpendo.00713.2009. Epub 2010 Mar 23.

Abstract

Identifying the mechanisms by which insulin regulates glucose metabolism in skeletal muscle is critical to understanding the etiology of insulin resistance and type 2 diabetes. Our knowledge of these mechanisms is limited by the difficulty of obtaining in vivo intracellular data. To quantitatively distinguish significant transport and metabolic mechanisms from limited experimental data, we developed a physiologically based, multiscale mathematical model of cellular metabolic dynamics in skeletal muscle. The model describes mass transport and metabolic processes including distinctive processes of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase, pyruvate dehydrogenase); or M.3, parallel activation by a phenomenological insulin-mediated intracellular signal that modifies reaction rate coefficients. These simulations indicated that models M.1 and M.2 were not sufficient to explain the experimentally measured metabolic responses. However, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development of type 2 diabetes.

摘要

确定胰岛素调节骨骼肌葡萄糖代谢的机制对于理解胰岛素抵抗和 2 型糖尿病的病因至关重要。由于难以获得体内细胞内数据,我们对这些机制的了解受到限制。为了从有限的实验数据中定量区分重要的转运和代谢机制,我们开发了一种基于生理学的骨骼肌细胞代谢动力学多尺度数学模型。该模型描述了质量传递和代谢过程,包括细胞质和线粒体的独特过程。该模型模拟了胰岛素对骨骼肌代谢的反应,与人体高胰岛素-正常血糖钳夹研究相对应。胰岛素介导的葡萄糖摄取速率是模型的主要输入。为了验证模型,模拟结果与实验数据进行了比较:细胞内代谢物浓度和葡萄糖摄取模式。模拟了模型的变化,以研究三种替代机制来解释胰岛素增强作用:模型 1(M.1),简单的质量作用;M.2,胰岛素介导的关键代谢酶(即己糖激酶、糖原合酶、丙酮酸脱氢酶)的激活;或 M.3,通过一种现象学的胰岛素介导的细胞内信号来平行激活,该信号改变反应速率常数。这些模拟表明,模型 M.1 和 M.2 不足以解释实验测量的代谢反应。然而,通过应用机制 M.3,该模型预测了与实验数据一致的代谢物浓度变化和葡萄糖分配模式。该胰岛素/葡萄糖代谢详细模型量化的反应速率通量提供了可用于评估 2 型糖尿病发展的信息。

相似文献

1
Computational model of cellular metabolic dynamics: effect of insulin on glucose disposal in human skeletal muscle.
Am J Physiol Endocrinol Metab. 2010 Jun;298(6):E1198-209. doi: 10.1152/ajpendo.00713.2009. Epub 2010 Mar 23.
5
Metabolic control analysis of insulin-stimulated glucose disposal in rat skeletal muscle.
Am J Physiol. 1999 Sep;277(3):E505-12. doi: 10.1152/ajpendo.1999.277.3.E505.
7
9
Insulin unexpectedly increases the glucose 6-phosphate Ka of skeletal muscle glycogen synthase in calorie-restricted monkeys.
J Basic Clin Physiol Pharmacol. 1998;9(2-4):309-23. doi: 10.1515/JBCPP.1998.9.2-4.309.
10
Impaired glucose partitioning in primary myotubes from severely obese women with type 2 diabetes.
Am J Physiol Cell Physiol. 2020 Dec 1;319(6):C1011-C1019. doi: 10.1152/ajpcell.00157.2020. Epub 2020 Sep 23.

引用本文的文献

1
Virtual metabolic human dynamic model for pathological analysis and therapy design for diabetes.
iScience. 2021 Jan 27;24(2):102101. doi: 10.1016/j.isci.2021.102101. eCollection 2021 Feb 19.
3
Modeling the Physiological Factors Affecting Glucose Sensor Function in Vivo.
J Diabetes Sci Technol. 2015 Jun 30;9(5):993-8. doi: 10.1177/1932296815593094.
4
Simulation predicts IGFBP2-HIF1α interaction drives glioblastoma growth.
PLoS Comput Biol. 2015 Apr 17;11(4):e1004169. doi: 10.1371/journal.pcbi.1004169. eCollection 2015 Apr.
5
Systems mapping of metabolic genes through control theory.
Adv Drug Deliv Rev. 2013 Jun 30;65(7):918-28. doi: 10.1016/j.addr.2013.04.007. Epub 2013 Apr 17.
7
Computational modeling of the metabolic States regulated by the kinase akt.
Front Physiol. 2012 Nov 21;3:418. doi: 10.3389/fphys.2012.00418. eCollection 2012.
8
Model analysis of the relationship between intracellular PO2 and energy demand in skeletal muscle.
Am J Physiol Regul Integr Comp Physiol. 2012 Dec;303(11):R1110-26. doi: 10.1152/ajpregu.00106.2012. Epub 2012 Sep 12.

本文引用的文献

1
Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
Am J Physiol Cell Physiol. 2009 Jan;296(1):C25-46. doi: 10.1152/ajpcell.00094.2008. Epub 2008 Oct 1.
2
Mitochondrial fitness and insulin sensitivity in humans.
Diabetologia. 2008 Dec;51(12):2155-67. doi: 10.1007/s00125-008-1153-2. Epub 2008 Sep 19.
3
Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults.
J Appl Physiol (1985). 2008 May;104(5):1313-9. doi: 10.1152/japplphysiol.00890.2007. Epub 2008 Mar 6.
4
Cardiovascular actions of insulin.
Endocr Rev. 2007 Aug;28(5):463-91. doi: 10.1210/er.2007-0006. Epub 2007 May 24.
6
Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations.
J Math Biol. 2006 Nov;53(5):771-96. doi: 10.1007/s00285-006-0032-z. Epub 2006 Oct 5.
7
The metabolic syndrome: role of skeletal muscle metabolism.
Ann Med. 2006;38(6):389-402. doi: 10.1080/07853890600888413.
8
The underappreciated role of muscle in health and disease.
Am J Clin Nutr. 2006 Sep;84(3):475-82. doi: 10.1093/ajcn/84.3.475.
9
Mechanistic model of fuel selection in the muscle.
J Theor Biol. 2006 Sep 7;242(1):151-63. doi: 10.1016/j.jtbi.2006.02.009. Epub 2006 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验