Division of Biostatistics and Bioinformatics, Pennsylvania State University, Hershey, PA 17033, USA.
Adv Drug Deliv Rev. 2013 Jun 30;65(7):918-28. doi: 10.1016/j.addr.2013.04.007. Epub 2013 Apr 17.
The formation of any complex phenotype involves a web of metabolic pathways in which one chemical is transformed through the catalysis of enzymes into another. Traditional approaches for mapping quantitative trait loci (QTLs) are based on a direct association analysis between DNA marker genotypes and end-point phenotypes, neglecting the mechanistic processes of how a phenotype is formed biochemically. Here, we propose a new dynamic framework for mapping metabolic QTLs (mQTLs) responsible for phenotypic formation. By treating metabolic pathways as a biological system, robust differential equations have proven to be a powerful means of studying and predicting the dynamic behavior of biochemical reactions that cause a high-order phenotype. The new framework integrates these differential equations into a statistical mixture model for QTL mapping. Since the mathematical parameters that define the emergent properties of the metabolic system can be estimated and tested for different mQTL genotypes, the framework allows the dynamic pattern of genetic effects to be quantified on metabolic capacity and efficacy across a time-space scale. Based on a recent study of glycolysis in Saccharomyces cerevisiae, we design and perform a series of simulation studies to investigate the statistical properties of the framework and validate its usefulness and utilization in practice. This framework can be generalized to mapping QTLs for any other dynamic systems and may stimulate pharmacogenetic research toward personalized drug and treatment intervention.
任何复杂表型的形成都涉及到一个代谢途径网络,其中一种化学物质通过酶的催化转化为另一种化学物质。传统的定量性状基因座 (QTL) 作图方法基于 DNA 标记基因型与终点表型之间的直接关联分析,忽略了表型在生化上形成的机制过程。在这里,我们提出了一种新的代谢 QTL (mQTL) 作图的动态框架,用于研究负责表型形成的代谢途径。通过将代谢途径视为一个生物系统,稳健的微分方程已被证明是研究和预测引起高阶表型的生化反应动态行为的有力手段。新框架将这些微分方程集成到用于 QTL 作图的统计混合模型中。由于定义代谢系统涌现特性的数学参数可以针对不同的 mQTL 基因型进行估计和检验,因此该框架允许在时空尺度上量化遗传效应在代谢能力和功效上的动态模式。基于最近对酿酒酵母糖酵解的研究,我们设计并进行了一系列模拟研究,以研究该框架的统计性质,并验证其在实践中的有用性和实用性。这个框架可以推广到任何其他动态系统的 QTL 作图,并可能促进针对个性化药物和治疗干预的药物遗传学研究。