Dept. of Biomedical Engineering, Case Western Reserve Univ., 10900 Euclid Ave., Wickenden Bldg. Rm. 524, Cleveland, OH 44106-7207, USA.
Am J Physiol Regul Integr Comp Physiol. 2012 Dec;303(11):R1110-26. doi: 10.1152/ajpregu.00106.2012. Epub 2012 Sep 12.
On the basis of experimental studies, the intracellular O(2) (iPo(2))-work rate (WR) relationship in skeletal muscle is not unique. One study found that iPo(2) reached a plateau at 60% of maximal WR, while another found that iPo(2) decreased linearly at higher WR, inferring capillary permeability-surface area (PS) and blood-tissue O(2) gradient, respectively, as alternative dominant factors for determining O(2) diffusion changes during exercise. This relationship is affected by several factors, including O(2) delivery and oxidative and glycolytic capacities of the muscle. In this study, these factors are examined using a mechanistic, mathematical model to analyze experimental data from contracting skeletal muscle and predict the effects of muscle contraction on O(2) transport, glycogenolysis, and iPo(2). The model describes convection, O(2) diffusion, and cellular metabolism, including anaerobic glycogenolysis. Consequently, the model simulates iPo(2) in response to muscle contraction under a variety of experimental conditions. The model was validated by comparison of simulations of O(2) uptake with corresponding experimental responses of electrically stimulated canine muscle under different O(2) content, blood flow, and contraction intensities. The model allows hypothetical variation of PS, glycogenolytic capacity, and blood flow and predictions of the distinctive effects of these factors on the iPo(2)-contraction intensity relationship in canine muscle. Although PS is the main factor regulating O(2) diffusion rate, model simulations indicate that PS and O(2) gradient have essential roles, depending on the specific conditions. Furthermore, the model predicts that different convection and diffusion patterns and metabolic factors may be responsible for different iPo(2)-WR relationships in humans.
基于实验研究,骨骼肌细胞内氧(iPo(2))工作率(WR)关系不是唯一的。一项研究发现,iPo(2) 在达到最大 WR 的 60%时达到平台,而另一项研究发现,iPo(2) 在更高的 WR 下呈线性下降,分别推断毛细血管通透性-表面积(PS)和血液-组织氧梯度是决定运动中氧扩散变化的替代主导因素。这种关系受到多种因素的影响,包括氧输送和肌肉的氧化和糖酵解能力。在这项研究中,使用一种机械的、数学的模型来检查这些因素,以分析收缩骨骼肌的实验数据,并预测肌肉收缩对氧运输、糖酵解和 iPo(2)的影响。该模型描述了对流、O(2)扩散和细胞代谢,包括无氧糖酵解。因此,该模型模拟了肌肉收缩时的 iPo(2),在各种实验条件下。该模型通过比较不同氧含量、血流量和收缩强度下电刺激犬肌肉的氧摄取模拟与相应的实验反应进行了验证。该模型允许假设 PS、糖酵解能力和血流量的变化,并预测这些因素对犬肌肉 iPo(2)-收缩强度关系的独特影响。虽然 PS 是调节 O(2)扩散速率的主要因素,但模型模拟表明,PS 和 O(2)梯度具有重要作用,这取决于具体情况。此外,该模型预测,不同的对流和扩散模式以及代谢因素可能是导致人类不同的 iPo(2)-WR 关系的原因。