Suppr超能文献

{Fe(NO)(2)}(9) 和 {Fe(NO)(2)}(10) 二硝酰基铁配合物的不同电子结构在调节亚硝酸盐结合模式和亚硝酸盐活化途径中的作用。

Roles of the distinct electronic structures of the {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) dinitrosyliron complexes in modulating nitrite binding modes and nitrite activation pathways.

机构信息

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

J Am Chem Soc. 2010 Apr 14;132(14):5290-9. doi: 10.1021/ja100849r.

Abstract

Nitrosylation of PPN[(ONO)(2)Fe(eta(2)-ONO)(2)] [1; PPN = bis(triphenylphosphoranylidene)ammonium] yields the nitrite-containing {Fe(NO)}(7) mononitrosyliron complex (MNIC) PPN[(NO)Fe(ONO)(3)(eta(2)-ONO)] (2). At 4 K, complex 2 exhibits an S = (3)/(2) axial EPR spectrum with principal g values of g( perpendicular) = 3.971 and g( parallel) = 2.000, suggestive of the {Fe(III)(NO(-))}(7) electronic structure. Addition of 1 equiv of PPh(3) to complex 2 triggers O-atom transfer of the chelating nitrito ligand under mild conditions to yield the {Fe(NO)(2)}(9) dinitrosyliron complex (DNIC) [PPN][(ONO)(2)Fe(NO)(2)] (3). These results demonstrate that both electronic structure [{Fe(III)(NO(-))}(7), S = (3)/(2)] and redox-active ligands (RS for (RS)(3)Fe(NO) and [NO(-)] for complex 2) are required for the transformation of {Fe(NO)}(7) MNICs into {Fe(NO)(2)}(9) DNICs. In comparison with the PPh(3)-triggered O-atom abstraction of the chelating nitrito ligand of the {Fe(NO)(2)}(9) DNIC [(1-MeIm)(2)(eta(2)-ONO)Fe(NO)(2)] (5; 1-MeIm = 1-methylimidazole) to generate the {Fe(NO)(2)}(10) DNIC [(1-MeIm)(PPh(3))Fe(NO)(2)] (6), glacial acetic acid protonation of the N-bound nitro ligand in the {Fe(NO)(2)}(10) DNIC [PPN][(eta(1)-NO(2))(PPh(3))Fe(NO)(2)] (7) produced the {Fe(NO)(2)}(9) DNIC [PPN][(OAc)(2)Fe(NO)(2)] (8), nitric oxide, and H(2)O. These results demonstrate that the distinct electronic structures of {Fe(NO)(2)}(9/10) motifs [{Fe(NO)(2)}(9) vs {Fe(NO)(2)}(10)] play crucial roles in modulating nitrite binding modes (O-bound chelating/monodentate nitrito for {Fe(NO)(2)}(9) DNICs vs N-bound nitro as a pi acceptor for {Fe(NO)(2)}(10) DNICs) and regulating nitrite activation pathways (O-atom abstraction by PPh(3) leading to the intermediate with a nitroxyl-coordinated ligand vs protonation accompanied by dehydration leading to the intermediate with a nitrosonium-coordinated ligand). That is, the redox shuttling between the {Fe(NO)(2)}(9) and {Fe(NO)(2)}(10) DNICs modulates the nitrite binding modes and then triggers nitrite activation to generate nitric oxide.

摘要

PPN[(ONO)(2)Fe(eta(2)-ONO)(2)] [1; PPN = 双(三苯基膦亚基)铵] 的亚硝酰化生成含亚硝酸盐的 {Fe(NO)}(7) 单核亚硝酰铁配合物 (MNIC) PPN[(NO)Fe(ONO)(3)(eta(2)-ONO)] (2)。在 4 K 下,配合物 2 表现出 S = (3)/(2) 轴向 EPR 谱,主要 g 值为 g( perpendicular) = 3.971 和 g( parallel) = 2.000,表明 {Fe(III)(NO(-))}(7) 电子结构。向配合物 2 中加入 1 当量的 PPh(3),在温和条件下引发螯合亚硝酰配体的氧原子转移,生成 {Fe(NO)(2)}(9) 双亚硝酰铁配合物 (DNIC) [PPN][(ONO)(2)Fe(NO)(2)] (3)。这些结果表明,电子结构 [{Fe(III)(NO(-))}(7),S = (3)/(2)] 和氧化还原活性配体 (RS 用于 (RS)(3)Fe(NO) 和 [NO(-)] 用于配合物 2) 对于将 {Fe(NO)}(7) MNIC 转化为 {Fe(NO)(2)}(9) DNIC 都是必需的。与 PPh(3)引发的螯合亚硝酰配体的氧原子摘取代反应相比,{Fe(NO)(2)}(9) DNIC [(1-MeIm)(2)(eta(2)-ONO)Fe(NO)(2)] (5; 1-MeIm = 1-甲基咪唑)中的 [Fe(NO)(2)}(9) DNIC 生成 {Fe(NO)(2)}(10) DNIC [(1-MeIm)(PPh(3))Fe(NO)(2)] (6),在 {Fe(NO)(2)}(10) DNIC [PPN][(eta(1)-NO(2))(PPh(3))Fe(NO)(2)] (7) 中,冰醋酸质子化 N 键合的硝基配体生成 {Fe(NO)(2)}(9) DNIC [PPN][(OAc)(2)Fe(NO)(2)] (8)、一氧化氮和水。这些结果表明,{Fe(NO)(2)}(9/10) 基序的不同电子结构 [{Fe(NO)(2)}(9) 与 {Fe(NO)(2)}(10)] 在调节亚硝酸盐结合模式 (O-键合螯合/单齿亚硝酰基用于 {Fe(NO)(2)}(9) DNICs 与 N-键合硝基作为 {Fe(NO)(2)}(10) DNICs 的π受体) 和调节亚硝酸盐活化途径 (PPh(3) 的氧原子摘取代导致配体带有硝酰基配位,质子化伴随脱水导致配体带有硝鎓基配位)方面起着至关重要的作用。也就是说,{Fe(NO)(2)}(9) 和 {Fe(NO)(2)}(10) DNIC 之间的氧化还原穿梭调节亚硝酸盐的结合模式,然后触发亚硝酸盐的活化以生成一氧化氮。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验