Suppr超能文献

二亚硝基铁配合物(DNICs)与取代配体反应形成独特的氧化还原相关形式的一氧化氮。

Formation of the distinct redox-interrelated forms of nitric oxide from reaction of dinitrosyl iron complexes (DNICs) and substitution ligands.

机构信息

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Chemistry. 2010 Jul 19;16(27):8088-95. doi: 10.1002/chem.201000524.

Abstract

Release of the distinct NO redox-interrelated forms (NO(+), *NO, and HNO/NO(-)), derived from reaction of the dinitrosyl iron complex (DNIC) (NO)(2)Fe(C(12)H(8)N)(2) (1) (C(12)H(8)N=carbazolate) and the substitution ligands (S(2)CNMe(2))(2), SC(6)H(4)-o-NHC(O)(C(5)H(4)N) ((PyPepS)(2)), and P(C(6)H(3)-3-SiMe(3)-2-SH)(3) ([P(SH)(3)]), respectively, was demonstrated. In contrast to the reaction of (PyPepS)(2) and DNIC 1 in a 1:1 stoichiometry that induces the release of an NO radical and the formation of complex [PPN][Fe(PyPepS)(2)] (4), the incoming substitution ligand (S(2)CNMe(2))(2) triggered the transformation of DNIC 1 into complex [(NO)Fe(S(2)CNMe(2))(2)] (2) along with N-nitrosocarbazole (3). The subsequent nitrosation of N-acetylpenicillamine (NAP) by N-nitrosocarbazole (3) to produce S-nitroso-N-acetylpenicillamine (SNAP) may signify the possible formation pathway of S-nitrosothiols from DNICs by means of transnitrosation of N-nitrosamines. Protonation of DNIC 1 by [P(SH)(3)] triggers the release of HNO and the generation of complex [PPN][Fe(NO)P(C(6)H(3)-3-SiMe(3)-2-S)(3)] (5). In a similar fashion, the nucleophilic attack of the chelating ligand P(C(6)H(3)-3-SiMe(3)-2-SNa)(3) ([P(SNa)(3)]) on DNIC 1 resulted in the direct release of NO captured by ((15)NO)Fe(SPh)(3), thus leading to ((15)NO)((14)NO)Fe(SPh)(2). These results illustrate one aspect of how the incoming substitution ligands ((S(2)CNMe(2))(2) vs. (PyPepS)(2) vs. [P(SH)(3)]/[P(SNa)(3)]) in cooperation with the carbazolate-coordinated ligands of DNIC 1 function to control the release of NO(+), *NO, or NO from DNIC 1 upon reaction of complex 1 and the substitution ligands. Also, these results signify that DNICs may act as an intermediary of NO in the redox signaling processes by providing the distinct redox-interrelated forms of NO to interact with different NO-responsive targets in biological systems.

摘要

(1)[(NO)(2)Fe(C(12)H(8)N)(2)]-(1)(C(12)H(8)N=carbazolate)与取代配体(S(2)CNMe(2))(2)、SC(6)H(4)-o-NHC(O)(C(5)H(4)N) ((PyPepS)(2))和 P(C(6)H(3)-3-SiMe(3)-2-SH)(3) ([P(SH)(3)]))反应,释放出不同的 NO 氧化还原相关形式(NO(+)、*NO 和 HNO/NO(-))。

(2)与(PyPepS)(2)和 1 的 1:1 化学计量比反应形成 NO 自由基和配合物[PPN][Fe(PyPepS)(2)](4)不同,进入的取代配体(S(2)CNMe(2))(2)触发了 1 向配合物[(NO)Fe(S(2)CNMe(2))(2)](2)的转化,同时形成 N-亚硝基卡唑(3)。

(3)N-亚硝基卡唑(3)随后对 N-乙酰青霉胺(NAP)的亚硝化作用生成 S-亚硝基-N-乙酰青霉胺(SNAP),可能标志着通过 N-亚硝胺的转亚硝作用,DNIC 形成 S-亚硝硫醇的可能形成途径。

(4)[P(SH)(3)]对 1 的质子化作用引发 HNO 的释放和配合物[PPN][Fe(NO)P(C(6)H(3)-3-SiMe(3)-2-S)(3)](5)的生成。

(5)同样,螯合配体 P(C(6)H(3)-3-SiMe(3)-2-SNa)(3) ([P(SNa)(3)])对 1 的亲核攻击直接释放了被((15)NO)Fe(SPh)(3)捕获的NO,从而生成((15)NO)((14)NO)Fe(SPh)(2)

(6)这些结果说明了在配合物 1 与取代配体反应时,进入的取代配体((S(2)CNMe(2))(2)与(PyPepS)(2)与[P(SH)(3)]/[P(SNa)(3)])与 DNIC 1 的咔唑配位配体如何协同作用,控制从 DNIC 1 释放 NO(+)、*NO 或NO

(7)此外,这些结果表明,DNIC 可以作为 NO 在氧化还原信号过程中的中间物,通过向生物系统中不同的 NO 反应靶标提供不同的氧化还原相关形式的 NO 来发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验