Suppr超能文献

二亚硝基铁配合物(DNICs)与取代配体反应形成独特的氧化还原相关形式的一氧化氮。

Formation of the distinct redox-interrelated forms of nitric oxide from reaction of dinitrosyl iron complexes (DNICs) and substitution ligands.

机构信息

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Chemistry. 2010 Jul 19;16(27):8088-95. doi: 10.1002/chem.201000524.

Abstract

Release of the distinct NO redox-interrelated forms (NO(+), *NO, and HNO/NO(-)), derived from reaction of the dinitrosyl iron complex (DNIC) (NO)(2)Fe(C(12)H(8)N)(2) (1) (C(12)H(8)N=carbazolate) and the substitution ligands (S(2)CNMe(2))(2), SC(6)H(4)-o-NHC(O)(C(5)H(4)N) ((PyPepS)(2)), and P(C(6)H(3)-3-SiMe(3)-2-SH)(3) ([P(SH)(3)]), respectively, was demonstrated. In contrast to the reaction of (PyPepS)(2) and DNIC 1 in a 1:1 stoichiometry that induces the release of an NO radical and the formation of complex [PPN][Fe(PyPepS)(2)] (4), the incoming substitution ligand (S(2)CNMe(2))(2) triggered the transformation of DNIC 1 into complex [(NO)Fe(S(2)CNMe(2))(2)] (2) along with N-nitrosocarbazole (3). The subsequent nitrosation of N-acetylpenicillamine (NAP) by N-nitrosocarbazole (3) to produce S-nitroso-N-acetylpenicillamine (SNAP) may signify the possible formation pathway of S-nitrosothiols from DNICs by means of transnitrosation of N-nitrosamines. Protonation of DNIC 1 by [P(SH)(3)] triggers the release of HNO and the generation of complex [PPN][Fe(NO)P(C(6)H(3)-3-SiMe(3)-2-S)(3)] (5). In a similar fashion, the nucleophilic attack of the chelating ligand P(C(6)H(3)-3-SiMe(3)-2-SNa)(3) ([P(SNa)(3)]) on DNIC 1 resulted in the direct release of NO captured by ((15)NO)Fe(SPh)(3), thus leading to ((15)NO)((14)NO)Fe(SPh)(2). These results illustrate one aspect of how the incoming substitution ligands ((S(2)CNMe(2))(2) vs. (PyPepS)(2) vs. [P(SH)(3)]/[P(SNa)(3)]) in cooperation with the carbazolate-coordinated ligands of DNIC 1 function to control the release of NO(+), *NO, or NO from DNIC 1 upon reaction of complex 1 and the substitution ligands. Also, these results signify that DNICs may act as an intermediary of NO in the redox signaling processes by providing the distinct redox-interrelated forms of NO to interact with different NO-responsive targets in biological systems.

摘要

(1)[(NO)(2)Fe(C(12)H(8)N)(2)]-(1)(C(12)H(8)N=carbazolate)与取代配体(S(2)CNMe(2))(2)、SC(6)H(4)-o-NHC(O)(C(5)H(4)N) ((PyPepS)(2))和 P(C(6)H(3)-3-SiMe(3)-2-SH)(3) ([P(SH)(3)]))反应,释放出不同的 NO 氧化还原相关形式(NO(+)、*NO 和 HNO/NO(-))。

(2)与(PyPepS)(2)和 1 的 1:1 化学计量比反应形成 NO 自由基和配合物[PPN][Fe(PyPepS)(2)](4)不同,进入的取代配体(S(2)CNMe(2))(2)触发了 1 向配合物[(NO)Fe(S(2)CNMe(2))(2)](2)的转化,同时形成 N-亚硝基卡唑(3)。

(3)N-亚硝基卡唑(3)随后对 N-乙酰青霉胺(NAP)的亚硝化作用生成 S-亚硝基-N-乙酰青霉胺(SNAP),可能标志着通过 N-亚硝胺的转亚硝作用,DNIC 形成 S-亚硝硫醇的可能形成途径。

(4)[P(SH)(3)]对 1 的质子化作用引发 HNO 的释放和配合物[PPN][Fe(NO)P(C(6)H(3)-3-SiMe(3)-2-S)(3)](5)的生成。

(5)同样,螯合配体 P(C(6)H(3)-3-SiMe(3)-2-SNa)(3) ([P(SNa)(3)])对 1 的亲核攻击直接释放了被((15)NO)Fe(SPh)(3)捕获的NO,从而生成((15)NO)((14)NO)Fe(SPh)(2)

(6)这些结果说明了在配合物 1 与取代配体反应时,进入的取代配体((S(2)CNMe(2))(2)与(PyPepS)(2)与[P(SH)(3)]/[P(SNa)(3)])与 DNIC 1 的咔唑配位配体如何协同作用,控制从 DNIC 1 释放 NO(+)、*NO 或NO

(7)此外,这些结果表明,DNIC 可以作为 NO 在氧化还原信号过程中的中间物,通过向生物系统中不同的 NO 反应靶标提供不同的氧化还原相关形式的 NO 来发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验