Division of Molecular Surface Physics and Nanoscience, Linköping University, SE-581 83 Linköping, Sweden.
Langmuir. 2010 Apr 20;26(8):5753-62. doi: 10.1021/la903566y.
Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3-5 nm) gadolinium oxide (DEG-Gd(2)O(3)) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd(2)O(3) nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd(2)O(3) nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r(1) and r(2) values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd(2)O(3). Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.
最近,人们对具有磁性的生物功能化纳米粒子的发展给予了极大的关注,这些纳米粒子可用于新型的生物医学成像。导向的、智能的、靶向的纳米颗粒磁共振成像(MRI)对比剂会诱导出高 MRI 信号,这将是未来组织特异性成像和分子及细胞事件研究的有价值的工具。在本研究中,我们报告了一种新设计的功能化超小稀土基纳米粒子,可用作 MRI 的正对比剂。弛豫率与市售的基于 Gd 的螯合物进行了比较。介绍了小(3-5nm)氧化钆(DEG-Gd2O3)纳米粒子的合成、聚乙二醇化和透析。采用傅里叶变换红外光谱、X 射线光电子能谱、透射电子显微镜和动态光散射对纳米材料的化学和物理性质进行了研究。通过荧光显微镜研究了这种纳米材料暴露后对中性粒细胞的激活作用。在 1.5T 下测量了质子弛豫时间作为透析时间和功能化的函数。设计并验证了一种引入稳定特性的封端程序,并评估了透析效果。与商业 Gd-DTPA 相比,合成的二乙二醇(DEG)-Gd2O3 纳米粒子具有更高的质子弛豫率。随着透析时间的延长,合成的 DEG-Gd2O3 纳米粒子的弛豫率略有下降。功能化纳米粒子的结果表明,经过大量透析的粒子的弛豫率显著增加,r1 和 r2 值大约是 Gd-DTPA 相应值的 4 倍。显微镜研究表明,与未封端的 Gd2O3 相比,PEG 化的纳米粒子不会激活中性粒细胞。最后,用罗丹明对纳米粒子进行了标记,表明我们的 PEG 化纳米粒子可用于进一步的偶联化学,从而为靶向目的做好了准备。长期目标是设计一种强大的、定向的 MRI 造影剂,具有特定的靶向可能性和诱导局部对比的特性,即在细胞和分子水平上产生极高的 MR 信号。
J Drug Target. 2010-11-23
ACS Appl Mater Interfaces. 2012-8-17
Nanomaterials (Basel). 2024-4-26
Nanomaterials (Basel). 2023-6-16
J Funct Biomater. 2022-10-20