Suppr超能文献

BMP12 和 BMP13 基因转导诱导间充质祖细胞和前交叉韧带细胞的韧带形成分化。

BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells.

机构信息

Orthopedic Center for Musculoskeletal Research, Department of Orthopedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University, Würzburg, Germany.

出版信息

Cytotherapy. 2010 Jul;12(4):505-13. doi: 10.3109/14653241003709652.

Abstract

BACKGROUND AIMS

To date there are only very few data available on the ligamentogenic differentiation capacity of mesenchymal stromal/progenitor cells (MSC) and anterior cruciate ligament (ACL) fibroblasts.

METHODS

We describe the in vitro potential of MSC and ACL cells to undergo ligamentogenic differentiation upon transduction with adenoviral vectors encoding the human cDNA for bone morphogenetic protein (BMP) 12 and BMP13, also known as growth and differentiation factors (GDF) 6 and 7, respectively.

RESULTS

Transgene expression for at least 14 days was confirmed by Western blot analyzes. After 21 days of cell culture within collagen type I hydrogels, histochemical (hematoxylin/eosin (H&E), Azan and van Gieson), immunohistochemical and polymerase chain reaction (PCR) analyzes of the genetically modified constructs of both cell types revealed elongated, viable fibroblast-like cells embedded in a ligament-like matrix rich in collagens, vimentin, fibronectin, decorin, elastin, scleraxis, tenascin, and tenomodulin.

CONCLUSIONS

It appears that both MSC and ACL fibroblasts are capable of ligamentogenic differentiation with these factors. This information may aid in the development of biologic approaches to repair and restore ACL after injury.

摘要

背景目的

迄今为止,关于间充质基质/祖细胞(MSC)和前交叉韧带(ACL)成纤维细胞的韧带形成分化能力的数据非常有限。

方法

我们描述了 MSC 和 ACL 细胞在转导编码人骨形态发生蛋白(BMP)12 和 BMP13(分别称为生长分化因子(GDF)6 和 7)的腺病毒载体后体外发生韧带形成分化的潜力。

结果

通过 Western blot 分析证实了至少 14 天的转基因表达。在 I 型胶原水凝胶中培养细胞 21 天后,对两种细胞类型的基因修饰构建体进行组织化学(苏木精/伊红(H&E)、阿赞和范盖森)、免疫组织化学和聚合酶链反应(PCR)分析显示,长而存活的成纤维细胞样细胞嵌入富含胶原蛋白、波形蛋白、纤维连接蛋白、饰胶蛋白、弹性蛋白、腱调蛋白、腱生蛋白和腱蛋白多糖的韧带样基质中。

结论

似乎这两种 MSC 和 ACL 成纤维细胞都具有这些因子的韧带形成分化能力。这些信息可能有助于开发修复和重建 ACL 损伤后的生物学方法。

相似文献

3
In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament.
Biomaterials. 2008 Mar;29(7):904-16. doi: 10.1016/j.biomaterials.2007.10.054. Epub 2007 Nov 28.
4
Growth Factor-Mediated Tenogenic Induction of Multipotent Mesenchymal Stromal Cells Is Altered by the Microenvironment of Tendon Matrix.
Cell Transplant. 2018 Oct;27(10):1434-1450. doi: 10.1177/0963689718792203. Epub 2018 Sep 25.
8
Mesenchymal stem cells reside in anterior cruciate ligament remnants in situ.
Int Orthop. 2016 Jul;40(7):1523-30. doi: 10.1007/s00264-015-2925-1. Epub 2015 Jul 31.
9
Direct-, fibroblast- and myoblast-mediated gene transfer to the anterior cruciate ligament.
Tissue Eng. 1999 Oct;5(5):435-42. doi: 10.1089/ten.1999.5.435.

引用本文的文献

1
Molecular Biology of ACL Graft Healing: Early Mechanical Loading Perspective.
Orthop Rev (Pavia). 2025 Jul 26;17:140716. doi: 10.52965/001c.140716. eCollection 2025.
3
ACL injury management: a comprehensive review of novel biotherapeutics.
Front Bioeng Biotechnol. 2024 Nov 22;12:1455225. doi: 10.3389/fbioe.2024.1455225. eCollection 2024.
4
An ultrastructure analysis of the developing human anterior cruciate ligament tibial enthesis.
J Orthop Res. 2025 Feb;43(2):264-272. doi: 10.1002/jor.25999. Epub 2024 Oct 24.
5
Reconstruction of the anterior cruciate ligament: a historical view.
Ann Transl Med. 2023 Aug 30;11(10):364. doi: 10.21037/atm-23-87. Epub 2023 Jun 19.
9
Advanced Gene Therapy Strategies for the Repair of ACL Injuries.
Int J Mol Sci. 2022 Nov 21;23(22):14467. doi: 10.3390/ijms232214467.
10
Application of BMP in Bone Tissue Engineering.
Front Bioeng Biotechnol. 2022 Mar 31;10:810880. doi: 10.3389/fbioe.2022.810880. eCollection 2022.

本文引用的文献

1
Mechanoactive tenogenic differentiation of human mesenchymal stem cells.
Tissue Eng Part A. 2008 Oct;14(10):1615-27. doi: 10.1089/ten.tea.2006.0415.
3
A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds.
Biomaterials. 2008 Apr;29(10):1443-53. doi: 10.1016/j.biomaterials.2007.11.023. Epub 2007 Dec 21.
4
In situ IGF-1 gene delivery to cells emerging from the injured anterior cruciate ligament.
Biomaterials. 2008 Mar;29(7):904-16. doi: 10.1016/j.biomaterials.2007.10.054. Epub 2007 Nov 28.
5
Principles for using hamstring tendons for anterior cruciate ligament reconstruction.
Clin Sports Med. 2007 Oct;26(4):567-85. doi: 10.1016/j.csm.2007.07.002.
6
Bone-patella tendon-bone autograft anterior cruciate ligament reconstruction.
Clin Sports Med. 2007 Oct;26(4):525-47. doi: 10.1016/j.csm.2007.06.006.
7
Interactive effects of growth factors and three-dimensional scaffolds on multipotent mesenchymal stromal cells.
Biotechnol Appl Biochem. 2008 Mar;49(Pt 3):185-94. doi: 10.1042/BA20070071.
8
Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons.
Development. 2007 Jul;134(14):2697-708. doi: 10.1242/dev.001933. Epub 2007 Jun 13.
10
Tendon and ligament engineering: from cell biology to in vivo application.
Regen Med. 2006 Jul;1(4):563-74. doi: 10.2217/17460751.1.4.563.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验