利用跨皮质深度延迟模式区分功能磁共振成像时间序列中的血氧水平依赖(BOLD)信号和非BOLD信号。

Differentiating BOLD and non-BOLD signals in fMRI time series using cross-cortical depth delay patterns.

作者信息

Chen Jingyuan E, Blazejewska Anna I, Fan Jiawen, Fultz Nina E, Rosen Bruce R, Lewis Laura D, Polimeni Jonathan R

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.

Department of Radiology, Harvard Medical School, Boston, MA, USA.

出版信息

bioRxiv. 2024 Dec 26:2024.12.26.628516. doi: 10.1101/2024.12.26.628516.

Abstract

Over the past two decades, rapid advancements in magnetic resonance technology have significantly enhanced the imaging resolution of functional Magnetic Resonance Imaging (fMRI), far surpassing its initial capabilities. Beyond mapping brain functional architecture at unprecedented scales, high-spatial-resolution acquisitions have also inspired and enabled several novel analytical strategies that can potentially improve the sensitivity and neuronal specificity of fMRI. With small voxels, one can sample from different levels of the vascular hierarchy within the cerebral cortex and resolve the temporal progression of hemodynamic changes from parenchymal to pial vessels. We propose that this characteristic pattern of temporal progression across cortical depths can aid in distinguishing neurogenic blood-oxygenation-level-dependent (BOLD) signals from typical nuisance factors arising from non-BOLD origins, such as head motion and pulsatility. In this study, we examine the feasibility of applying cross-cortical depth temporal delay patterns to automatically categorize BOLD and non-BOLD signal components in modern-resolution BOLD-fMRI data. We construct an independent component analysis (ICA)-based framework for fMRI de-noising, analogous to previously proposed multi-echo (ME) ICA, except that here we explore the across-depth instead of across-echo dependence to distinguish BOLD and non-BOLD components. The efficacy of this framework is demonstrated using visual task data at three graded spatiotemporal resolutions (voxel sizes = 1.1, 1.5, and 2.0 mm isotropic at temporal intervals = 1700, 1120, and 928 ms). The proposed framework leverages prior knowledge of the spatiotemporal properties of BOLD-fMRI and serves as an alternative to ME-ICA for cleaning moderate- and high-spatial-resolution fMRI data when multi-echo acquisitions are not available.

摘要

在过去二十年中,磁共振技术的快速发展显著提高了功能磁共振成像(fMRI)的成像分辨率,远远超越了其最初的能力。除了以前所未有的规模绘制脑功能结构外,高空间分辨率采集还激发并促成了几种新的分析策略,这些策略有可能提高fMRI的灵敏度和神经元特异性。通过小体素,可以从大脑皮层内不同层次的血管层级中进行采样,并解析从实质血管到软脑膜血管的血流动力学变化的时间进程。我们提出,这种跨皮质深度的时间进程特征模式有助于将神经源性血氧水平依赖(BOLD)信号与非BOLD来源的典型干扰因素区分开来,如头部运动和搏动性。在本研究中,我们检验了应用跨皮质深度时间延迟模式自动分类现代分辨率BOLD-fMRI数据中BOLD和非BOLD信号成分的可行性。我们构建了一个基于独立成分分析(ICA)的fMRI去噪框架,类似于先前提出的多回波(ME)ICA,不同之处在于,这里我们探索的是跨深度而非跨回波的依赖性来区分BOLD和非BOLD成分。使用三种分级时空分辨率(体素大小 = 1.1、1.5和2.0毫米各向同性,时间间隔 = 1700、1120和928毫秒)的视觉任务数据证明了该框架的有效性。所提出的框架利用了BOLD-fMRI时空特性的先验知识,并在无法进行多回波采集时作为ME-ICA的替代方法,用于清理中高空间分辨率的fMRI数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b089/11703183/c0bdfb398886/nihpp-2024.12.26.628516v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索