Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Str. 6.131, PO Box 85500, 3508 GA Utrecht, The Netherlands.
J Clin Epidemiol. 2010 Jul;63(7):728-36. doi: 10.1016/j.jclinepi.2009.08.028. Epub 2010 Mar 25.
Missing indicator method (MIM) and complete case analysis (CC) are frequently used to handle missing confounder data. Using empirical data, we demonstrated the degree and direction of bias in the effect estimate when using these methods compared with multiple imputation (MI).
From a cohort study, we selected an exposure (marital status), outcome (depression), and confounders (age, sex, and income). Missing values in "income" were created according to different patterns of missingness: missing values were created completely at random and depending on exposure and outcome values. Percentages of missing values ranged from 2.5% to 30%.
When missing values were completely random, MIM gave an overestimation of the odds ratio, whereas CC and MI gave unbiased results. MIM and CC gave under- or overestimations when missing values depended on observed values. Magnitude and direction of bias depended on how the missing values were related to exposure and outcome. Bias increased with increasing percentage of missing values.
MIM should not be used in handling missing confounder data because it gives unpredictable bias of the odds ratio even with small percentages of missing values. CC can be used when missing values are completely random, but it gives loss of statistical power.
缺失指标法(MIM)和完全案例分析(CC)常用于处理缺失混杂数据。本文使用实证数据,比较了这些方法与多重插补(MI)相比,在估计混杂因素缺失时的偏差程度和方向。
我们从队列研究中选择了一个暴露因素(婚姻状况)、一个结局因素(抑郁)和两个混杂因素(年龄、性别和收入)。根据不同的缺失模式创建“收入”的缺失值:完全随机缺失和根据暴露和结局值缺失。缺失值的百分比范围为 2.5%至 30%。
当缺失值完全随机时,MIM 高估了比值比,而 CC 和 MI 给出了无偏结果。当缺失值取决于观察值时,MIM 和 CC 会低估或高估。偏差的大小和方向取决于缺失值与暴露和结局的关系。随着缺失值百分比的增加,偏差也增加。
MIM 不应用于处理缺失混杂数据,因为即使缺失值的百分比很小,它也会导致比值比的不可预测的偏差。当缺失值完全随机时,可以使用 CC,但会降低统计效力。