Department of Psychiatry and Psychology, Mayo Clinic, Scottsdale, AZ , USA.
Neuroimage. 2010 Jul 15;51(4):1405-13. doi: 10.1016/j.neuroimage.2010.03.051. Epub 2010 Mar 25.
Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two independent data sets. From Mayo Clinic, 73 probable AD patients and 91 cognitively normal (CN) controls completed the Mini-Mental State Examination (MMSE), Dementia Rating Scale (DRS), and Auditory Verbal Learning Test (AVLT) within 3months of their scan. Baseline MRI's from the Alzheimer's disease Neuroimaging Initiative (ADNI) comprised the other data set; 113 AD, 351 MCI, and 122 CN subjects completed the MMSE and Alzheimer's Disease Assessment Scale-Cognitive subtest (ADAS-cog) and 39 AD, 92 MCI, and 32 CN ADNI subjects completed MMSE, ADAS-cog, and AVLT. Predicted and actual clinical scores were highly correlated for the MMSE, DRS, and ADAS-cog tests (P<0.0001). Training with one data set and testing with another demonstrated stability between data sets. DRS, MMSE, and ADAS-Cog correlated better than AVLT with whole brain grey matter changes associated with AD. This result underscores their utility for screening and tracking disease. RVR offers a novel way to measure interactions between structural changes and neuropsychological tests beyond that of univariate methods. In clinical practice, we envision using RVR to aid in diagnosis and predict clinical outcome.
机器学习和模式识别方法已被用于从个体 MRI 扫描中诊断阿尔茨海默病 (AD) 和轻度认知障碍 (MCI)。这些方法的另一个应用是从个体扫描中预测临床评分。我们使用相关向量回归 (RVR),从两个独立的数据集的 MRI T1 加权图像预测个体在既定测试中的表现。在梅奥诊所,73 名可能患有 AD 的患者和 91 名认知正常 (CN) 的对照者在扫描后 3 个月内完成了简易精神状态检查 (MMSE)、痴呆评定量表 (DRS) 和听觉词语学习测试 (AVLT)。阿尔茨海默病神经影像倡议 (ADNI) 的基线 MRI 构成了另一个数据集;113 名 AD、351 名 MCI 和 122 名 CN 参与者完成了 MMSE 和阿尔茨海默病评估量表认知子测验 (ADAS-cog),39 名 AD、92 名 MCI 和 32 名 ADNI 参与者完成了 MMSE、ADAS-cog 和 AVLT。对于 MMSE、DRS 和 ADAS-cog 测试,预测和实际临床评分高度相关 (P<0.0001)。用一个数据集进行训练,用另一个数据集进行测试,表明了数据集之间的稳定性。DRS、MMSE 和 ADAS-cog 与与 AD 相关的全脑灰质变化的相关性优于 AVLT。这一结果突出了它们在筛选和跟踪疾病方面的效用。RVR 提供了一种新的方法来测量结构变化与神经心理学测试之间的相互作用,而不仅仅是使用单变量方法。在临床实践中,我们设想使用 RVR 来辅助诊断和预测临床结果。