Suppr超能文献

正常衰老和阿尔茨海默病中结构-功能关联模式:使用机器学习回归和分类模型筛查轻度认知障碍和痴呆症。

Patterns of structure-function association in normal aging and in Alzheimer's disease: Screening for mild cognitive impairment and dementia with ML regression and classification models.

作者信息

Statsenko Yauhen, Meribout Sarah, Habuza Tetiana, Almansoori Taleb M, Gorkom Klaus Neidl-Van, Gelovani Juri G, Ljubisavljevic Milos

机构信息

Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.

Big Data Analytics Center (BIDAC), United Arab Emirates University, Al Ain, United Arab Emirates.

出版信息

Front Aging Neurosci. 2023 Feb 23;14:943566. doi: 10.3389/fnagi.2022.943566. eCollection 2022.

Abstract

BACKGROUND

The combined analysis of imaging and functional modalities is supposed to improve diagnostics of neurodegenerative diseases with advanced data science techniques.

OBJECTIVE

To get an insight into normal and accelerated brain aging by developing the machine learning models that predict individual performance in neuropsychological and cognitive tests from brain MRI. With these models we endeavor to look for patterns of brain structure-function association (SFA) indicative of mild cognitive impairment (MCI) and Alzheimer's dementia.

MATERIALS AND METHODS

We explored the age-related variability of cognitive and neuropsychological test scores in normal and accelerated aging and constructed regression models predicting functional performance in cognitive tests from brain radiomics data. The models were trained on the three study cohorts from ADNI dataset-cognitively normal individuals, patients with MCI or dementia-separately. We also looked for significant correlations between cortical parcellation volumes and test scores in the cohorts to investigate neuroanatomical differences in relation to cognitive status. Finally, we worked out an approach for the classification of the examinees according to the pattern of structure-function associations into the cohorts of the cognitively normal elderly and patients with MCI or dementia.

RESULTS

In the healthy population, the global cognitive functioning slightly changes with age. It also remains stable across the disease course in the majority of cases. In healthy adults and patients with MCI or dementia, the trendlines of performance in digit symbol substitution test and trail making test converge at the approximated point of 100 years of age. According to the SFA pattern, we distinguish three cohorts: the cognitively normal elderly, patients with MCI, and dementia. The highest accuracy is achieved with the model trained to predict the mini-mental state examination score from voxel-based morphometry data. The application of the majority voting technique to models predicting results in cognitive tests improved the classification performance up to 91.95% true positive rate for healthy participants, 86.21%-for MCI and 80.18%-for dementia cases.

CONCLUSION

The machine learning model, when trained on the cases of this of that group, describes a disease-specific SFA pattern. The pattern serves as a "stamp" of the disease reflected by the model.

摘要

背景

成像和功能模态的联合分析有望借助先进的数据科学技术改善神经退行性疾病的诊断。

目的

通过开发机器学习模型,从脑磁共振成像(MRI)预测神经心理学和认知测试中的个体表现,以深入了解正常和加速的脑老化。借助这些模型,我们努力寻找指示轻度认知障碍(MCI)和阿尔茨海默病性痴呆的脑结构-功能关联(SFA)模式。

材料与方法

我们探究了正常和加速老化中认知及神经心理学测试分数的年龄相关变异性,并构建了从脑影像组学数据预测认知测试功能表现的回归模型。这些模型分别在阿尔茨海默病神经影像学计划(ADNI)数据集的三个研究队列上进行训练,即认知正常个体、MCI患者或痴呆患者。我们还在各队列中寻找皮质分区体积与测试分数之间的显著相关性,以研究与认知状态相关的神经解剖学差异。最后,我们制定了一种根据结构-功能关联模式将受检者分类为认知正常老年人队列以及MCI或痴呆患者队列的方法。

结果

在健康人群中,全球认知功能随年龄略有变化。在大多数情况下,其在疾病过程中也保持稳定。在健康成年人以及MCI或痴呆患者中,数字符号替换测试和连线测试的表现趋势线在大约100岁的点处交汇。根据SFA模式,我们区分出三个队列:认知正常老年人、MCI患者和痴呆患者。使用基于体素的形态学测量数据训练以预测简易精神状态检查分数的模型可实现最高准确率。将多数投票技术应用于预测认知测试结果的模型,可将健康参与者的分类性能提高至真阳性率91.95%,MCI患者为86.21%,痴呆病例为80.18%。

结论

当在该组或那组病例上进行训练时,机器学习模型描述了一种疾病特异性的SFA模式。该模式充当了模型所反映疾病的“印记”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验