Gerardin Emilie, Chételat Gaël, Chupin Marie, Cuingnet Rémi, Desgranges Béatrice, Kim Ho-Sung, Niethammer Marc, Dubois Bruno, Lehéricy Stéphane, Garnero Line, Eustache Francis, Colliot Olivier
UPMC Université Paris 06, UMR 7225, UMR_S 975, Centre de Recherche de l'Institut Cerveau-Moelle (CRICM), Paris, France.
Neuroimage. 2009 Oct 1;47(4):1476-86. doi: 10.1016/j.neuroimage.2009.05.036. Epub 2009 May 20.
We describe a new method to automatically discriminate between patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI) and elderly controls, based on multidimensional classification of hippocampal shape features. This approach uses spherical harmonics (SPHARM) coefficients to model the shape of the hippocampi, which are segmented from magnetic resonance images (MRI) using a fully automatic method that we previously developed. SPHARM coefficients are used as features in a classification procedure based on support vector machines (SVM). The most relevant features for classification are selected using a bagging strategy. We evaluate the accuracy of our method in a group of 23 patients with AD (10 males, 13 females, age+/-standard-deviation (SD)=73+/-6 years, mini-mental score (MMS)=24.4+/-2.8), 23 patients with amnestic MCI (10 males, 13 females, age+/-SD=74+/-8 years, MMS=27.3+/-1.4) and 25 elderly healthy controls (13 males, 12 females, age+/-SD=64+/-8 years), using leave-one-out cross-validation. For AD vs controls, we obtain a correct classification rate of 94%, a sensitivity of 96%, and a specificity of 92%. For MCI vs controls, we obtain a classification rate of 83%, a sensitivity of 83%, and a specificity of 84%. This accuracy is superior to that of hippocampal volumetry and is comparable to recently published SVM-based whole-brain classification methods, which relied on a different strategy. This new method may become a useful tool to assist in the diagnosis of Alzheimer's disease.
我们描述了一种基于海马形状特征的多维分类方法,用于自动区分阿尔茨海默病(AD)患者、轻度认知障碍(MCI)患者和老年对照组。该方法使用球谐函数(SPHARM)系数对海马形状进行建模,这些海马是通过我们之前开发的全自动方法从磁共振图像(MRI)中分割出来的。SPHARM系数在基于支持向量机(SVM)的分类过程中用作特征。使用装袋策略选择分类最相关的特征。我们采用留一法交叉验证,在一组23例AD患者(10例男性,13例女性,年龄±标准差(SD)=73±6岁,简易精神状态评分(MMS)=24.4±2.8)、23例遗忘型MCI患者(10例男性,13例女性,年龄±SD=74±8岁,MMS=27.3±1.4)和25例老年健康对照(13例男性,12例女性,年龄±SD=64±8岁)中评估我们方法的准确性。对于AD与对照组,我们获得了94%的正确分类率、96%的灵敏度和92%的特异性。对于MCI与对照组,我们获得了83%的分类率、83%的灵敏度和84%的特异性。这种准确性优于海马体积测量法,并且与最近发表的基于SVM的全脑分类方法相当,后者采用了不同的策略。这种新方法可能成为辅助诊断阿尔茨海默病的有用工具。