Suppr超能文献

基线多模态影像学预测非典型阿尔茨海默病的纵向临床衰退。

Baseline multimodal imaging to predict longitudinal clinical decline in atypical Alzheimer's disease.

机构信息

Department of Neurology, Mayo Clinic (Rochester), Rochester, MN, USA.

Department of Neurology, Mayo Clinic (Rochester), Rochester, MN, USA.

出版信息

Cortex. 2024 Nov;180:18-34. doi: 10.1016/j.cortex.2024.07.020. Epub 2024 Sep 11.

Abstract

There are recognized neuroimaging regions of interest in typical Alzheimer's disease which have been used to track disease progression and aid prognostication. However, there is a need for validated baseline imaging markers to predict clinical decline in atypical Alzheimer's Disease. We aimed to address this need by producing models from baseline imaging features using penalized regression and evaluating their predictive performance on various clinical measures. Baseline multimodal imaging data, in combination with clinical testing data at two time points from 46 atypical Alzheimer's Disease patients with a diagnosis of logopenic progressive aphasia (N = 24) or posterior cortical atrophy (N = 22), were used to generate our models. An additional 15 patients (logopenic progressive aphasia = 7, posterior cortical atrophy = 8), whose data were not used in our original analysis, were used to test our models. Patients underwent MRI, FDG-PET and Tau-PET imaging and a full neurologic battery at two time points. The Schaefer functional atlas was used to extract network-based and regional gray matter volume or PET SUVR values from baseline imaging. Penalized regression (Elastic Net) was used to create models to predict scores on testing at Time 2 while controlling for baseline performance, education, age, and sex. In addition, we created models using clinical or Meta Region of Interested (ROI) data to serve as comparisons. We found the degree of baseline involvement on neuroimaging was predictive of future performance on cognitive testing while controlling for the above measures on all three imaging modalities. In many cases, model predictability improved with the addition of network-based neuroimaging data to clinical data. We also found our network-based models performed superiorly to the comparison models comprised of only clinical or a Meta ROI score. Creating predictive models from imaging studies at a baseline time point that are agnostic to clinical diagnosis as we have described could prove invaluable in both the clinical and research setting, particularly in the development and implementation of future disease modifying therapies.

摘要

在典型的阿尔茨海默病中,已经有公认的神经影像学感兴趣区域被用于跟踪疾病进展和辅助预后判断。然而,需要有经过验证的基线影像学标志物来预测非典型阿尔茨海默病的临床衰退。我们旨在通过使用惩罚回归从基线影像学特征中生成模型,并评估它们在各种临床测量上的预测性能来满足这一需求。使用来自 46 名非典型阿尔茨海默病患者(其中诊断为失语法性进展性失语症的患者有 24 名,皮质后萎缩的患者有 22 名)的基线多模态影像学数据和临床测试数据,这些患者在两个时间点进行了两次检查,来生成我们的模型。另外,还使用了 15 名(失语法性进展性失语症患者 7 名,皮质后萎缩患者 8 名)数据未用于我们原始分析的患者来测试我们的模型。患者在两个时间点接受了 MRI、FDG-PET 和 Tau-PET 成像以及完整的神经系统检查。使用 Schaefer 功能图谱从基线影像学中提取基于网络的和区域灰质体积或 PET SUVR 值。使用惩罚回归(弹性网络)创建模型,以预测在时间 2 时的测试分数,同时控制基线表现、教育、年龄和性别。此外,我们还使用临床或元感兴趣区域(ROI)数据创建模型作为比较。我们发现,在控制所有三种成像模式的上述措施的情况下,基线神经影像学的病变程度与未来认知测试的表现相关。在许多情况下,将网络神经影像学数据添加到临床数据中可以提高模型的可预测性。我们还发现,与仅包含临床或元 ROI 评分的比较模型相比,我们的基于网络的模型表现更优。正如我们所描述的,从基线时间点的影像学研究中创建对临床诊断无偏见的预测模型,无论是在临床还是研究环境中,都可能非常有价值,特别是在开发和实施未来的疾病修饰疗法方面。

相似文献

本文引用的文献

2
Lecanemab in Early Alzheimer's Disease.早期阿尔茨海默病中的lecanemab
N Engl J Med. 2023 Jan 5;388(1):9-21. doi: 10.1056/NEJMoa2212948. Epub 2022 Nov 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验