Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA.
Mol Cell. 2010 Mar 26;37(6):834-42. doi: 10.1016/j.molcel.2010.01.037.
The organization of the eukaryotic genome into nucleosomes dramatically affects the regulation of gene expression. The delicate balance between transcription and DNA compaction relies heavily on nucleosome dynamics. Surprisingly, little is known about the free energy required to assemble these large macromolecular complexes and maintain them under physiological conditions. Here, we describe the thermodynamic parameters that drive nucleosome formation in vitro. To demonstrate the versatility of our approach, we test the effect of DNA sequence and H3K56 acetylation on nucleosome thermodynamics. Furthermore, our studies reveal the mechanism of action of the histone chaperone nucleosome assembly protein 1 (Nap1). We present evidence for a paradigm in which nucleosome assembly requires the elimination of competing, nonnucleosomal histone-DNA interactions by Nap1. This observation is confirmed in vivo, wherein deletion of the NAP1 gene in yeast results in a significant increase in atypical histone-DNA complexes, as well as in deregulated transcription activation and repression.
真核生物基因组组织成核小体,极大地影响了基因表达的调控。转录和 DNA 压缩之间的微妙平衡严重依赖于核小体的动力学。令人惊讶的是,人们对组装这些大型大分子复合物所需的自由能以及在生理条件下维持它们所需的自由能知之甚少。在这里,我们描述了驱动体外核小体形成的热力学参数。为了展示我们方法的多功能性,我们测试了 DNA 序列和 H3K56 乙酰化对核小体热力学的影响。此外,我们的研究揭示了组蛋白伴侣核小体组装蛋白 1 (Nap1) 的作用机制。我们提出了一个范例,即核小体组装需要通过 Nap1 消除竞争的、非核小体的组蛋白-DNA 相互作用。这一观察结果在体内得到了证实,酵母中 NAP1 基因的缺失导致异常组蛋白-DNA 复合物的显著增加,以及转录激活和抑制的失调。