Suppr超能文献

通过社交网络传播健康信息:推特和抗生素。

Dissemination of health information through social networks: twitter and antibiotics.

机构信息

Integrated Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University, New York, NY 10032, USA.

出版信息

Am J Infect Control. 2010 Apr;38(3):182-8. doi: 10.1016/j.ajic.2009.11.004.

Abstract

BACKGROUND

This study reviewed Twitter status updates mentioning "antibiotic(s)" to determine overarching categories and explore evidence of misunderstanding or misuse of antibiotics.

METHODS

One thousand Twitter status updates mentioning antibiotic(s) were randomly selected for content analysis and categorization. To explore cases of potential misunderstanding or misuse, these status updates were mined for co-occurrence of the following terms: "cold + antibiotic(s)," "extra + antibiotic(s)," "flu + antibiotic(s)," "leftover + antibiotic(s)," and "share + antibiotic(s)" and reviewed to confirm evidence of misuse or misunderstanding.

RESULTS

Of the 1000 status updates, 971 were categorized into 11 groups: general use (n = 289), advice/information (n = 157), side effects/negative reactions (n = 113), diagnosis (n = 102), resistance (n = 92), misunderstanding and/or misuse (n = 55), positive reactions (n = 48), animals (n = 46), other (n = 42), wanting/needing (n = 19), and cost (n = 8). Cases of misunderstanding or abuse were identified for the following combinations: "flu + antibiotic(s)" (n = 345), "cold + antibiotic(s)" (n = 302), "leftover + antibiotic(s)" (n = 23), "share + antibiotic(s)" (n = 10), and "extra + antibiotic(s)" (n = 7).

CONCLUSION

Social media sites offer means of health information sharing. Further study is warranted to explore how such networks may provide a venue to identify misuse or misunderstanding of antibiotics, promote positive behavior change, disseminate valid information, and explore how such tools can be used to gather real-time health data.

摘要

背景

本研究回顾了提及“抗生素”的 Twitter 状态更新,以确定总体类别,并探讨对抗生素的误解或误用的证据。

方法

随机选择 1000 条提及抗生素的 Twitter 状态更新进行内容分析和分类。为了探索潜在的误解或误用情况,这些状态更新挖掘了以下术语的共同出现:“感冒+抗生素”、“额外+抗生素”、“流感+抗生素”、“剩余+抗生素”和“分享+抗生素”,并进行了审查以确认误用或误解的证据。

结果

在 1000 条状态更新中,971 条分为 11 组:一般用途(n=289)、建议/信息(n=157)、副作用/不良反应(n=113)、诊断(n=102)、耐药性(n=92)、误解和/或误用(n=55)、阳性反应(n=48)、动物(n=46)、其他(n=42)、需要/需要(n=19)和成本(n=8)。确定了以下组合的误解或滥用情况:“流感+抗生素”(n=345)、“感冒+抗生素”(n=302)、“剩余+抗生素”(n=23)、“分享+抗生素”(n=10)和“额外+抗生素”(n=7)。

结论

社交媒体网站提供了健康信息共享的手段。需要进一步研究以探讨这些网络如何提供识别抗生素滥用或误解的场所,促进积极的行为改变,传播有效信息,并探索如何利用这些工具来收集实时健康数据。

相似文献

1
Dissemination of health information through social networks: twitter and antibiotics.
Am J Infect Control. 2010 Apr;38(3):182-8. doi: 10.1016/j.ajic.2009.11.004.
3
Antibiotic use in chicken farms in northwestern China.
Antimicrob Resist Infect Control. 2020 Jan 7;9(1):10. doi: 10.1186/s13756-019-0672-6. eCollection 2020.
5
Internet and social media use for antibiotic-related information seeking: Findings from a survey among adult population in Italy.
Int J Med Inform. 2018 Mar;111:131-139. doi: 10.1016/j.ijmedinf.2017.12.005. Epub 2017 Dec 14.
6
Poor health knowledge and behaviour is a risk for the spread of antibiotic resistance: survey of higher secondary school students in Goa, India.
Perspect Public Health. 2017 Mar;137(2):109-113. doi: 10.1177/1757913916650917. Epub 2016 Jul 20.
8
The public's perspectives on antibiotic resistance and abuse among Chinese in Hong Kong.
Pharmacoepidemiol Drug Saf. 2013 Mar;22(3):241-9. doi: 10.1002/pds.3339. Epub 2012 Aug 23.

引用本文的文献

1
Prevalence and Predictors of Posting Health-Related Content Among US Facebook Users: A Cross-Sectional Survey Study.
Int J Environ Res Public Health. 2025 Jun 10;22(6):918. doi: 10.3390/ijerph22060918.
4
Mapping the Mpox discourse: A network and sentiment analysis.
Explor Res Clin Soc Pharm. 2024 Oct 9;16:100521. doi: 10.1016/j.rcsop.2024.100521. eCollection 2024 Dec.
7
Evaluation of the information quality related to osteoporosis on TikTok.
BMC Public Health. 2024 Oct 18;24(1):2880. doi: 10.1186/s12889-024-20375-2.
9
Health education and promotion of #PhysicalActivity on Twitter before and during COVID-19.
Health Educ J. 2023 Apr;82(3):286-296. doi: 10.1177/00178969231154076. Epub 2023 Feb 19.

本文引用的文献

1
Use of unstructured event-based reports for global infectious disease surveillance.
Emerg Infect Dis. 2009 May;15(5):689-95. doi: 10.3201/eid1505.081114.
3
Trust evaluation in health information on the World Wide Web.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1525-8. doi: 10.1109/IEMBS.2008.4649459.
4
Behavior change interventions delivered by mobile telephone short-message service.
Am J Prev Med. 2009 Feb;36(2):165-73. doi: 10.1016/j.amepre.2008.09.040.
5
Health 2.0 and Medicine 2.0: tensions and controversies in the field.
J Med Internet Res. 2008 Aug 6;10(3):e23. doi: 10.2196/jmir.1056.
6
Public health and Web 2.0.
J R Soc Promot Health. 2008 Jul;128(4):181-9. doi: 10.1177/1466424008092228.
7
HCLS 2.0/3.0: health care and life sciences data mashup using Web 2.0/3.0.
J Biomed Inform. 2008 Oct;41(5):694-705. doi: 10.1016/j.jbi.2008.04.001. Epub 2008 Apr 11.
8
SMS STI: a review of the uses of mobile phone text messaging in sexual health.
Int J STD AIDS. 2008 May;19(5):287-90. doi: 10.1258/ijsa.2007.007264.
9
Q-methodology in nursing research: a promising method for the study of subjectivity.
West J Nurs Res. 2008 Oct;30(6):759-73. doi: 10.1177/0193945907312979. Epub 2008 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验