Plant Biochemistry Laboratory, Villum Kann Rasmussen Research Centre for Pro-Active Plants, and Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, Faculty of Life Sciences, Copenhagen University, 1871 Frederiksberg C, Copenhagen, Denmark.
Plant Physiol. 2010 May;153(1):348-63. doi: 10.1104/pp.109.149286. Epub 2010 Mar 26.
While R2R3 MYB transcription factors are a large gene family of transcription factors within plants, comprehensive functional data in planta are still scarce. A model for studying R2R3 MYB control of metabolic networks is the glucosinolates (GLSs), secondary metabolites that control plant resistance against insects and pathogens and carry cancer-preventive properties. Three related members of the R2R3 MYB transcription factor family within Arabidopsis (Arabidopsis thaliana), MYB28, MYB29, and MYB76, are the commonly defined regulators of aliphatic GLS biosynthesis. We utilized new genotypes and systems analysis techniques to test the existing regulatory model in which MYB28 is the dominant regulator, MYB29 plays a minor rheostat role, and MYB76 is largely uninvolved. We unequivocally show that MYB76 is not dependent on MYB28 and MYB29 for induction of aliphatic GLSs and that MYB76 plays a role in determining the spatial distribution of aliphatic GLSs within the leaf, pointing at a potential role of MYB76 in transport regulation. Transcriptional profiling of knockout mutants revealed that GLS metabolite levels are uncoupled from the level of transcript accumulation for aliphatic GLS biosynthetic genes. This uncoupling of chemotypes from biosynthetic transcripts suggests revising our view of the regulation of GLS metabolism from a simple linear transcription factor-promoter model to a more modular system in which transcription factors cause similar chemotypes via nonoverlapping regulatory patterns. Similar regulatory networks might exist in other secondary pathways.
虽然 R2R3 MYB 转录因子是植物中一个庞大的转录因子基因家族,但在植物体内综合功能数据仍然稀缺。研究 R2R3 MYB 控制代谢网络的模型是硫代葡萄糖苷(GLS),这是一种次生代谢物,可以控制植物对昆虫和病原体的抗性,并具有预防癌症的特性。拟南芥(Arabidopsis thaliana)中 R2R3 MYB 转录因子家族的三个相关成员,MYB28、MYB29 和 MYB76,通常被定义为脂肪族 GLS 生物合成的调节剂。我们利用新的基因型和系统分析技术来检验现有的调控模型,即 MYB28 是主要的调控因子,MYB29 起次要的变阻器作用,而 MYB76 则基本不参与。我们明确地表明,MYB76 不依赖于 MYB28 和 MYB29 诱导脂肪族 GLS,并且 MYB76 在确定叶片中脂肪族 GLS 的空间分布方面发挥作用,这表明 MYB76 在运输调节中可能发挥作用。敲除突变体的转录谱分析表明,GLS 代谢物水平与脂肪族 GLS 生物合成基因的转录本积累水平解耦。这种化学型与生物合成转录本的解耦表明,我们对 GLS 代谢调控的看法需要从简单的线性转录因子-启动子模型转变为更模块化的系统,其中转录因子通过非重叠的调控模式引起相似的化学型。类似的调控网络可能存在于其他次生途径中。