Suppr超能文献

红细胞聚集和血流速度对微动脉无细胞层形成的影响。

Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.

机构信息

Division of Bioengineering and Department of Surgery, National University of Singapore, Singapore.

出版信息

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1870-8. doi: 10.1152/ajpheart.01182.2009. Epub 2010 Mar 26.

Abstract

Formation of a cell-free layer is an important dynamic feature of microcirculatory blood flow, which can be influenced by rheological parameters, such as red blood cell aggregation and flow rate. In this study, we investigate the effect of these two rheological parameters on cell-free layer characteristics in the arterioles (20-60 mum inner diameter). For the first time, we provide here the detailed temporal information of the arteriolar cell-free layer in various rheological conditions to better describe the characteristics of the layer variation. The rat cremaster muscle was used to visualize arteriolar flows, and the extent of aggregation was raised by dextran 500 infusion to levels seen in normal human blood. Our results show that cell-free layer formation in the arterioles is enhanced by a combination of flow reduction and red blood cell aggregation. A positive relation (P < 0.005) was found between mean cell-free layer widths and their corresponding SDs for all conditions. An analysis of the frequency and magnitudes of cell-free layer variation from their mean value revealed that the layer deviated with significantly larger magnitudes into the red blood cell core after flow reduction and dextran infusion (P < 0.05). In accordance, the disparity of cell-free layer width distribution found in opposite radial directions from its mean became greater with aggregation in reduced flow conditions. This study shows that the cell-free layer width in arterioles is dependent on both flow rate and red blood cell aggregability, and that the temporal variations in width are asymmetric with a greater excursion into the red blood cell core than toward the vessel wall.

摘要

无细胞层的形成是微循环血流的一个重要动态特征,它会受到诸如红细胞聚集和流速等流变学参数的影响。在这项研究中,我们研究了这两个流变学参数对小动脉(20-60μm 内径)中无细胞层特征的影响。我们首次提供了在各种流变条件下小动脉无细胞层的详细时间信息,以更好地描述层变化的特征。使用大鼠提睾肌可视化小动脉血流,并用葡聚糖 500 输注将聚集程度提高到正常人血液中所见的水平。结果表明,血流减少和红细胞聚集共同增强了小动脉中无细胞层的形成。对于所有条件,均发现无细胞层平均宽度与其相应标准差之间存在正相关关系(P<0.005)。对其平均值的无细胞层变化的频率和幅度的分析表明,在血流减少和葡聚糖输注后,层明显更大幅度地偏离红细胞核心(P<0.05)。相应地,在聚合减少的流动条件下,从平均值的相反径向发现的无细胞层宽度分布差异更大。这项研究表明,小动脉中的无细胞层宽度取决于流速和红细胞聚集性,并且宽度的时间变化是不对称的,向红细胞核心的偏移幅度大于向血管壁的偏移幅度。

相似文献

1
Effect of erythrocyte aggregation and flow rate on cell-free layer formation in arterioles.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1870-8. doi: 10.1152/ajpheart.01182.2009. Epub 2010 Mar 26.
3
Temporal and spatial variations of cell-free layer width in arterioles.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1526-35. doi: 10.1152/ajpheart.01090.2006. Epub 2007 May 25.
4
Effect of cell-free layer variation on arteriolar wall shear stress.
Ann Biomed Eng. 2011 Jan;39(1):359-66. doi: 10.1007/s10439-010-0130-3. Epub 2010 Jul 23.
5
Spatio-temporal variations in cell-free layer formation near bifurcations of small arterioles.
Microvasc Res. 2012 Mar;83(2):118-25. doi: 10.1016/j.mvr.2011.11.003. Epub 2011 Nov 9.
6
Cell-free layer formation in small arterioles at pathological levels of erythrocyte aggregation.
Microcirculation. 2011 Oct;18(7):541-51. doi: 10.1111/j.1549-8719.2011.00114.x.
7
Contributions of collision rate and collision efficiency to erythrocyte aggregation in postcapillary venules at low flow rates.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1947-54. doi: 10.1152/ajpheart.00764.2006. Epub 2007 Jul 6.
8
Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.
Am J Physiol Heart Circ Physiol. 2016 Aug 1;311(2):H487-97. doi: 10.1152/ajpheart.00223.2016. Epub 2016 May 27.
10
Effect of erythrocyte aggregation at pathological levels on NO/O2 transport in small arterioles.
Clin Hemorheol Microcirc. 2015;59(2):163-75. doi: 10.3233/CH-141837.

引用本文的文献

1
Evaluation of a new point-of-care diagnostic test measuring inflammation in emergency settings.
Sci Rep. 2023 Nov 9;13(1):19551. doi: 10.1038/s41598-023-46347-x.
2
A microfluidic method to investigate platelet mechanotransduction under extensional strain.
Res Pract Thromb Haemost. 2023 Jan 10;7(1):100037. doi: 10.1016/j.rpth.2023.100037. eCollection 2023 Jan.
3
Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes.
Biomimetics (Basel). 2022 Jan 13;7(1):15. doi: 10.3390/biomimetics7010015.
4
Computational investigation of blood cell transport in retinal microaneurysms.
PLoS Comput Biol. 2022 Jan 5;18(1):e1009728. doi: 10.1371/journal.pcbi.1009728. eCollection 2022 Jan.
5
The influence of red blood cell deformability on hematocrit profiles and platelet margination.
PLoS Comput Biol. 2020 Mar 12;16(3):e1007716. doi: 10.1371/journal.pcbi.1007716. eCollection 2020 Mar.
6
Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels.
Biomicrofluidics. 2019 Nov 18;13(6):064115. doi: 10.1063/1.5127879. eCollection 2019 Nov.
8
10
Spatial distributions of red blood cells significantly alter local haemodynamics.
PLoS One. 2014 Jun 20;9(6):e100473. doi: 10.1371/journal.pone.0100473. eCollection 2014.

本文引用的文献

3
Nitric oxide generation by endothelial cells exposed to shear stress in glass tubes perfused with red blood cell suspensions: role of aggregation.
Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2098-105. doi: 10.1152/ajpheart.00015.2008. Epub 2008 Mar 7.
4
Temporal and spatial variations of cell-free layer width in arterioles.
Am J Physiol Heart Circ Physiol. 2007 Sep;293(3):H1526-35. doi: 10.1152/ajpheart.01090.2006. Epub 2007 May 25.
6
A computer-based method for determination of the cell-free layer width in microcirculation.
Microcirculation. 2006 Apr-May;13(3):199-207. doi: 10.1080/10739680600556878.
7
Effect of erythrocyte aggregation at normal human levels on functional capillary density in rat spinotrapezius muscle.
Am J Physiol Heart Circ Physiol. 2006 Mar;290(3):H941-7. doi: 10.1152/ajpheart.00645.2005. Epub 2005 Sep 23.
8
Impact of the Fåhraeus effect on NO and O2 biotransport: a computer model.
Microcirculation. 2004 Jun;11(4):337-49. doi: 10.1080/10739680490437496.
9
Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution.
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10060-5. doi: 10.1073/pnas.0402937101. Epub 2004 Jun 25.
10
Radial displacement of red blood cells during hemodilution and the effect on arteriolar oxygen profile.
Am J Physiol Heart Circ Physiol. 2004 Mar;286(3):H1223-8. doi: 10.1152/ajpheart.00666.2003. Epub 2003 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验