Suppr超能文献

法厄效应(Fåhraeus effect)对一氧化氮和氧气生物转运的影响:计算机模型

Impact of the Fåhraeus effect on NO and O2 biotransport: a computer model.

作者信息

Lamkin-Kennard Kathleen A, Jaron Dov, Buerk Donald G

机构信息

School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

出版信息

Microcirculation. 2004 Jun;11(4):337-49. doi: 10.1080/10739680490437496.

Abstract

Nitric oxide (NO) and oxygen (O2) transport in the microcirculation are coupled in a complex manner, since enzymatic production of NO depends on O2 availability, NO modulates vascular tone and O2 delivery, and tissue O2 consumption is reversibly inhibited by NO. The authors investigated whether NO bioavailability is influenced by the well-known Fåhraeus effect, which has been observed for over 70 years. This phenomenon occurs in small-diameter blood vessels, where the tube hematocrit is reduced below systemic hematocrit as a plasma boundary layer forms near the vascular wall when flowing red blood cells (rbcs) migrate toward the center of the bloodstream. Since hemoglobin in the bloodstream is thought to be the primary scavenger of NO in vivo, this might have a significant impact on NO transport. To investigate this possibility, the authors developed a multilayered mathematical model for mass transport in arterioles using finite element numerical methods to simulate coupled NO and O2 transport in the blood vessel lumen, plasma layer, endothelium, vascular wall, and surrounding tissue. The Fåhraeus effect was modeled by varying plasma layer thickness while increasing core hematocrit based on conservation of mass. Key findings from this study are that (1) despite an increase in the NO scavenging rate in the core with higher hematocrit, the model predicts enhanced vascular wall and tissue NO bioavailability due to the relatively greater resistance for NO diffusion through the plasma layer; (2) increasing the plasma layer thickness also increases the resistance for O2 diffusion, causing a larger P(O2) gradient near the vascular wall and decreasing tissue O2 availability, although this can be partially offset with inhibition of O2 consumption by higher tissue NO levels; (3) the Fåhraeus effect can become very significant in smaller blood vessels (diameters <30 microm); and (4) models that ignore the Fåhraeus effect may underestimate NO concentrations in blood and tissue.

摘要

一氧化氮(NO)和氧气(O₂)在微循环中的传输以复杂的方式相互耦合,因为NO的酶促生成取决于O₂的可用性,NO调节血管张力和O₂输送,并且组织O₂消耗会被NO可逆性抑制。作者研究了NO生物利用度是否受已被观察70多年的著名的法赫瑞效应影响。这种现象发生在小直径血管中,当流动的红细胞(RBC)向血流中心迁移时,由于血管壁附近形成血浆边界层,管内血细胞比容会降低至低于全身血细胞比容。由于血流中的血红蛋白被认为是体内NO的主要清除剂,这可能会对NO传输产生重大影响。为了研究这种可能性,作者使用有限元数值方法开发了一个用于小动脉质量传输的多层数学模型,以模拟血管腔、血浆层、内皮、血管壁和周围组织中NO和O₂的耦合传输。通过改变血浆层厚度并根据质量守恒增加核心血细胞比容来模拟法赫瑞效应。该研究的主要发现是:(1)尽管随着血细胞比容升高,核心区域的NO清除率增加,但模型预测由于NO通过血浆层扩散的阻力相对较大,血管壁和组织的NO生物利用度会提高;(2)增加血浆层厚度也会增加O₂扩散的阻力,导致血管壁附近的P(O₂)梯度更大,组织O₂可用性降低,尽管较高的组织NO水平对O₂消耗的抑制可以部分抵消这种影响;(3)法赫瑞效应在较小的血管(直径<30微米)中可能变得非常显著;(4)忽略法赫瑞效应的模型可能会低估血液和组织中的NO浓度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验