Section of Pulmonary and Critical Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
Am J Physiol Lung Cell Mol Physiol. 2010 Jun;298(6):L837-48. doi: 10.1152/ajplung.00263.2009. Epub 2010 Mar 26.
Pathological lung overdistention associated with mechanical ventilation at high tidal volumes (ventilator-induced lung injury; VILI) compromises endothelial cell (EC) barrier leading to development of pulmonary edema and increased morbidity and mortality. We have previously shown involvement of microtubule (MT)-associated Rho-specific guanine nucleotide exchange factor GEF-H1 in the agonist-induced regulation of EC permeability. Using an in vitro model of human pulmonary EC exposed to VILI-relevant magnitude of cyclic stretch (18% CS) we tested a hypothesis that CS-induced alterations in MT dynamics contribute to the activation of Rho-dependent signaling via GEF-H1 and mediate early EC response to pathological mechanical stretch. Acute CS (30 min) induced disassembly of MT network, cell reorientation, and activation of Rho pathway, which was prevented by MT stabilizer taxol. siRNA-based GEF-H1 knockdown suppressed CS-induced disassembly of MT network, abolished Rho signaling, and attenuated CS-induced stress fiber formation and EC realignment compared with nonspecific RNA controls. Depletion of GEF-H1 in the murine two-hit model of VILI attenuated vascular leak induced by lung ventilation at high tidal volume and thrombin-derived peptide TRAP6. These data show for the first time the critical involvement of microtubules and microtubule-associated GEF-H1 in lung vascular endothelial barrier dysfunction induced by pathological mechanical strain.
病理性肺过度膨胀与高潮气量机械通气有关(呼吸机诱导的肺损伤;VILI),会损害内皮细胞(EC)屏障,导致肺水肿的发生,并增加发病率和死亡率。我们之前已经表明,微管(MT)相关的Rho 特异性鸟嘌呤核苷酸交换因子 GEF-H1 参与了激动剂诱导的 EC 通透性调节。在体外人肺 EC 模型中,我们使用与 VILI 相关幅度的周期性拉伸(18% CS)进行测试,假设 CS 诱导的 MT 动力学改变通过 GEF-H1 参与 Rho 依赖性信号的激活,并介导 EC 对病理性机械拉伸的早期反应。急性 CS(30 分钟)诱导 MT 网络的解聚、细胞重定向和 Rho 途径的激活,这一过程被 MT 稳定剂紫杉醇所阻止。基于 siRNA 的 GEF-H1 敲低抑制了 CS 诱导的 MT 网络解聚,消除了 Rho 信号,并减轻了 CS 诱导的应力纤维形成和 EC 重新排列,与非特异性 RNA 对照相比。在 VILI 的两击小鼠模型中耗尽 GEF-H1 可减轻高潮气量肺通气引起的血管渗漏和凝血酶衍生肽 TRAP6。这些数据首次表明微管和微管相关的 GEF-H1 在病理性机械应变引起的肺血管内皮屏障功能障碍中起着关键作用。