Suppr超能文献

L-半胱氨酸/L-胱氨酸穿梭系统为大肠杆菌的周质提供还原当量。

The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli.

机构信息

Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan.

出版信息

J Biol Chem. 2010 Jun 4;285(23):17479-87. doi: 10.1074/jbc.M109.081356. Epub 2010 Mar 29.

Abstract

Intracellular thiols like L-cysteine and glutathione play a critical role in the regulation of cellular processes. Escherichia coli has multiple L-cysteine transporters, which export L-cysteine from the cytoplasm into the periplasm. However, the role of L-cysteine in the periplasm remains unknown. Here we show that an L-cysteine transporter, YdeD, is required for the tolerance of E. coli cells to hydrogen peroxide. We also present evidence that L-cystine, a product from the oxidation of L-cysteine by hydrogen peroxide, is imported back into the cytoplasm in a manner dependent on FliY, the periplasmic L-cystine-binding protein. Remarkably, this protein, which is involved in the recycling of the oxidized L-cysteine, is also found to be important for the hydrogen peroxide resistance of this organism. Furthermore, our analysis of the transcription of relevant genes revealed that the transcription of genes encoding FliY and YdeD is highly induced by hydrogen peroxide rather than by L-cysteine. These findings led us to propose that the inducible L-cysteine/L-cystine shuttle system plays an important role in oxidative stress tolerance through providing a reducing equivalent to the periplasm in E. coli.

摘要

细胞内的巯基,如 L-半胱氨酸和谷胱甘肽,在细胞过程的调节中起着关键作用。大肠杆菌有多种 L-半胱氨酸转运蛋白,可将 L-半胱氨酸从细胞质输出到周质。然而,L-半胱氨酸在周质中的作用尚不清楚。在这里,我们表明 L-半胱氨酸转运蛋白 YdeD 对于大肠杆菌细胞耐受过氧化氢是必需的。我们还提供了证据表明,L-胱氨酸是过氧化氢氧化 L-半胱氨酸的产物,以依赖于 FliY(周质 L-胱氨酸结合蛋白)的方式被回收到细胞质中。值得注意的是,这种参与氧化 L-半胱氨酸循环利用的蛋白质对于该生物体的过氧化氢抗性也很重要。此外,我们对相关基因转录的分析表明,编码 FliY 和 YdeD 的基因的转录高度受过氧化氢诱导,而不是受 L-半胱氨酸诱导。这些发现使我们提出,可诱导的 L-半胱氨酸/L-胱氨酸穿梭系统通过向大肠杆菌的周质提供还原当量,在氧化应激耐受中发挥重要作用。

相似文献

1
The L-cysteine/L-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli.
J Biol Chem. 2010 Jun 4;285(23):17479-87. doi: 10.1074/jbc.M109.081356. Epub 2010 Mar 29.
4
Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli.
J Bacteriol. 2015 Dec;197(23):3629-44. doi: 10.1128/JB.00277-15. Epub 2015 Sep 8.
5
CydDC functions as a cytoplasmic cystine reductase to sensitize to oxidative stress and aminoglycosides.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23565-23570. doi: 10.1073/pnas.2007817117. Epub 2020 Sep 8.
6
The CydDC family of transporters.
Res Microbiol. 2019 Nov-Dec;170(8):407-416. doi: 10.1016/j.resmic.2019.06.003. Epub 2019 Jul 3.
7
A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm.
J Biol Chem. 2005 Sep 16;280(37):32254-61. doi: 10.1074/jbc.M503075200. Epub 2005 Jul 22.
8
A periplasmic reducing system protects single cysteine residues from oxidation.
Science. 2009 Nov 20;326(5956):1109-11. doi: 10.1126/science.1179557.
10
nDsbD: a redox interaction hub in the Escherichia coli periplasm.
Cell Mol Life Sci. 2006 Jul;63(14):1642-8. doi: 10.1007/s00018-006-6055-1.

引用本文的文献

1
Engineering for the Production of the PK/NRP Hybrid Antibiotic Salivabactin.
ACS Sustain Chem Eng. 2025 Jul 14;13(27):10556-10562. doi: 10.1021/acssuschemeng.5c03104. Epub 2025 Jun 30.
3
When less is more: Counterintuitive stoichiometries and cellular abundances are essential for ABC transporters' function.
Sci Adv. 2025 May 23;11(21):eadq7470. doi: 10.1126/sciadv.adq7470. Epub 2025 May 21.
5
Stress-Induced Sulfide Production by and .
Microorganisms. 2024 Sep 7;12(9):1856. doi: 10.3390/microorganisms12091856.
7
Regulation of Cysteine Homeostasis and Its Effect on Sensitivity to Ciprofloxacin in LB Medium.
Int J Mol Sci. 2024 Apr 17;25(8):4424. doi: 10.3390/ijms25084424.
9
Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance.
Cell Rep. 2023 Sep 26;42(9):113105. doi: 10.1016/j.celrep.2023.113105. Epub 2023 Sep 19.

本文引用的文献

2
Extracellular thiol-assisted selenium uptake dependent on the x(c)- cystine transporter explains the cancer-specific cytotoxicity of selenite.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11400-5. doi: 10.1073/pnas.0902204106. Epub 2009 Jun 22.
3
Disulfide formation in the ER and mitochondria: two solutions to a common process.
Science. 2009 Jun 5;324(5932):1284-7. doi: 10.1126/science.1170653.
4
Disulfide bond formation by exported glutaredoxin indicates glutathione's presence in the E. coli periplasm.
Proc Natl Acad Sci U S A. 2009 Feb 3;106(5):1572-7. doi: 10.1073/pnas.0812596106. Epub 2009 Jan 21.
5
Subcellular localization and in vivo oxidation-reduction kinetics of thiol peroxidase in Escherichia coli.
FEMS Microbiol Lett. 2008 Dec;289(1):41-5. doi: 10.1111/j.1574-6968.2008.01372.x.
6
The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli.
Appl Microbiol Biotechnol. 2009 Jan;81(5):903-13. doi: 10.1007/s00253-008-1686-9. Epub 2008 Sep 17.
7
9
The cystine/cysteine cycle: a redox cycle regulating susceptibility versus resistance to cell death.
Oncogene. 2008 Mar 6;27(11):1618-28. doi: 10.1038/sj.onc.1210796. Epub 2007 Sep 10.
10
Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae.
Genetics. 2007 Jun;176(2):877-90. doi: 10.1534/genetics.107.070342. Epub 2007 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验