Ohtsu Iwao, Kawano Yusuke, Suzuki Marina, Morigasaki Susumu, Saiki Kyohei, Yamazaki Shunsuke, Nonaka Gen, Takagi Hiroshi
Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan.
Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Company, Kawasaki, Kanagawa, Japan.
PLoS One. 2015 Apr 2;10(3):e0120619. doi: 10.1371/journal.pone.0120619. eCollection 2015.
Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (Km = 1.1 μM) that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (Km = 110 nM) in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.
细胞内硫醇如L-胱氨酸和L-半胱氨酸在细胞过程的调节中起关键作用。在此我们表明,大肠杆菌有两种L-胱氨酸转运蛋白,同向转运体YdjN和ATP结合盒式导入蛋白FliY-YecSC。这些蛋白质将L-胱氨酸(L-半胱氨酸的氧化产物)从周质转运到细胞质中。同向转运体YdjN有望成为L-胱氨酸调节子的新成员,是一种低亲和力的L-胱氨酸转运蛋白(Km = 1.1 μM),主要作为营养物质从外部摄取L-胱氨酸。大肠杆菌只有两种L-胱氨酸导入蛋白,因为ΔydjNΔyecS突变细胞无法在以L-胱氨酸作为唯一硫源的基本培养基中生长。另一种蛋白质YecSC是依赖FliY的L-胱氨酸转运蛋白,它与L-胱氨酸转运蛋白YdeD协同发挥作用,YdeD将L-胱氨酸作为还原当量从细胞质输出到周质,以防止大肠杆菌细胞受到氧化应激。输出的L-胱氨酸可以将周质中的过氧化氢还原为水,然后生成的L-半胱氨酸通过对L-胱氨酸具有高亲和力(Km = 110 nM)的ATP结合盒式转运蛋白YecSC以依赖于周质L-胱氨酸结合蛋白FliY的方式重新导入细胞质中。ydeD和fliY的双重破坏增加了细胞内脂质过氧化物的水平。基于这些发现,我们提出过氧化氢诱导的L-胱氨酸/L-半胱氨酸穿梭系统在脂质过氧化发生之前起到过氧化氢解毒的作用,然后可能特异性地防止膜脂受损。