Suppr超能文献

CydDC 作为一种细胞质半胱氨酸还原酶,使 对氧化应激和氨基糖苷类药物敏感。

CydDC functions as a cytoplasmic cystine reductase to sensitize to oxidative stress and aminoglycosides.

机构信息

Department of Molecular Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia.

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23565-23570. doi: 10.1073/pnas.2007817117. Epub 2020 Sep 8.

Abstract

l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in the component of cytochrome -I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the phenotype, unlike that of the bona fide l-cysteine exporter , parallels that of the l-cystine importer Chromosomal induction of , but not of , from a strong pLtetO-1 promoter (P) leads to the increased level of extracellular l-cysteine, whereas induction of or causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by overexpression. Furthermore, inactivation of the ferric uptake regulator ( in P- or P- cells results in dramatic loss of survival, whereas catalase () overexpression suppresses the hypersensitivity of both strains to HO These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.

摘要

l-半胱氨酸是所有细菌含硫生物分子的来源。然而,由于 l-半胱氨酸具有还原铁并驱动有害芬顿化学的倾向,因此细胞质中 l-半胱氨酸的水平必须严格控制。有人提出,在细胞色素 -I 末端氧化酶的组成部分 CydDC 复合物中,将过量的 l-半胱氨酸从细胞质运送到周质,从而维持氧化还原平衡。在这里,我们通过证明 CydDC 的替代功能提供了证据,即表型与真正的 l-半胱氨酸外排体不同,与 l-胱氨酸导入体相似。 从强 pLtetO-1 启动子(P)诱导 ,而不是 或 ,会导致细胞外 l-半胱氨酸水平升高,而诱导 或 会导致细胞质 l-半胱氨酸积累。一致地,失活 使细胞对过氧化氢和氨基糖苷类抗生素具有抗性。相比之下,诱导 使细胞对氧化应激和氨基糖苷类药物敏感,而过表达 可以抑制这种敏感性。此外,铁摄取调节剂( 在 P- 或 P- 细胞中的失活会导致存活急剧丧失,而过氧化氢酶()的过表达抑制了这两种菌株对 HO 的敏感性。这些结果确立了 CydDC 作为细胞质胱氨酸的还原剂,而不是 l-半胱氨酸外排体,并进一步阐明了氧化应激、抗生素耐药性和硫代谢之间的联系。

相似文献

1
CydDC functions as a cytoplasmic cystine reductase to sensitize to oxidative stress and aminoglycosides.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23565-23570. doi: 10.1073/pnas.2007817117. Epub 2020 Sep 8.
4
Mechanism of HS-mediated protection against oxidative stress in .
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6022-6027. doi: 10.1073/pnas.1703576114. Epub 2017 May 22.
5
The CydDC family of transporters.
Res Microbiol. 2019 Nov-Dec;170(8):407-416. doi: 10.1016/j.resmic.2019.06.003. Epub 2019 Jul 3.
6
The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis.
Adv Microb Physiol. 2015;66:1-53. doi: 10.1016/bs.ampbs.2015.04.002. Epub 2015 Jun 10.
8
A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm.
J Biol Chem. 2005 Sep 16;280(37):32254-61. doi: 10.1074/jbc.M503075200. Epub 2005 Jul 22.
10
The long Q-loop of Escherichia coli cytochrome bd oxidase is required for assembly and structural integrity.
FEBS Lett. 2020 May;594(10):1577-1585. doi: 10.1002/1873-3468.13749. Epub 2020 Feb 13.

引用本文的文献

3
An S-methyltransferase that produces the climate-active gas dimethylsulfide is widespread across diverse marine bacteria.
Nat Microbiol. 2024 Oct;9(10):2614-2625. doi: 10.1038/s41564-024-01788-6. Epub 2024 Aug 28.
4
Activation of Purine Biosynthesis Suppresses the Sensitivity of Mutant to Antibiotics.
Int J Mol Sci. 2023 Nov 8;24(22):16070. doi: 10.3390/ijms242216070.
5
The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli.
Redox Biol. 2023 Aug;64:102800. doi: 10.1016/j.redox.2023.102800. Epub 2023 Jun 26.
7
Dissecting the conformational complexity and mechanism of a bacterial heme transporter.
Nat Chem Biol. 2023 Aug;19(8):992-1003. doi: 10.1038/s41589-023-01314-5. Epub 2023 Apr 24.
8
Genes Vary Greatly in Their Propensity for Collateral Fitness Effects of Mutations.
Mol Biol Evol. 2023 Mar 4;40(3). doi: 10.1093/molbev/msad038.
9
10
The Inactivation of LPS Biosynthesis Genes in Cells Leads to Oxidative Stress.
Cells. 2022 Aug 27;11(17):2667. doi: 10.3390/cells11172667.

本文引用的文献

1
Transcription factor YcjW controls the emergency HS production in E. coli.
Nat Commun. 2019 Jun 28;10(1):2868. doi: 10.1038/s41467-019-10785-x.
2
Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli.
J Bacteriol. 2017 Jul 25;199(16). doi: 10.1128/JB.00117-17. Print 2017 Aug 15.
3
Mechanism of HS-mediated protection against oxidative stress in .
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6022-6027. doi: 10.1073/pnas.1703576114. Epub 2017 May 22.
5
Death by Cystine: an Adverse Emergent Property from a Beneficial Series of Reactions.
J Bacteriol. 2015 Dec;197(23):3626-8. doi: 10.1128/JB.00546-15. Epub 2015 Sep 14.
6
Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli.
J Bacteriol. 2015 Dec;197(23):3629-44. doi: 10.1128/JB.00277-15. Epub 2015 Sep 8.
7
The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis.
Adv Microb Physiol. 2015;66:1-53. doi: 10.1016/bs.ampbs.2015.04.002. Epub 2015 Jun 10.
9
Moving forward with reactive oxygen species involvement in antimicrobial lethality.
J Antimicrob Chemother. 2015 Mar;70(3):639-42. doi: 10.1093/jac/dku463. Epub 2014 Nov 23.
10
Unraveling the physiological complexities of antibiotic lethality.
Annu Rev Pharmacol Toxicol. 2015;55:313-32. doi: 10.1146/annurev-pharmtox-010814-124712. Epub 2014 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验