Suppr超能文献

CydDC 作为一种细胞质半胱氨酸还原酶,使 对氧化应激和氨基糖苷类药物敏感。

CydDC functions as a cytoplasmic cystine reductase to sensitize to oxidative stress and aminoglycosides.

机构信息

Department of Molecular Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia.

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23565-23570. doi: 10.1073/pnas.2007817117. Epub 2020 Sep 8.

Abstract

l-cysteine is the source of all bacterial sulfurous biomolecules. However, the cytoplasmic level of l-cysteine must be tightly regulated due to its propensity to reduce iron and drive damaging Fenton chemistry. It has been proposed that in the component of cytochrome -I terminal oxidase, the CydDC complex, shuttles excessive l-cysteine from the cytoplasm to the periplasm, thereby maintaining redox homeostasis. Here, we provide evidence for an alternative function of CydDC by demonstrating that the phenotype, unlike that of the bona fide l-cysteine exporter , parallels that of the l-cystine importer Chromosomal induction of , but not of , from a strong pLtetO-1 promoter (P) leads to the increased level of extracellular l-cysteine, whereas induction of or causes the accumulation of cytoplasmic l-cysteine. Congruently, inactivation of renders cells resistant to hydrogen peroxide and to aminoglycoside antibiotics. In contrast, induction of sensitizes cells to oxidative stress and aminoglycosides, which can be suppressed by overexpression. Furthermore, inactivation of the ferric uptake regulator ( in P- or P- cells results in dramatic loss of survival, whereas catalase () overexpression suppresses the hypersensitivity of both strains to HO These results establish CydDC as a reducer of cytoplasmic cystine, as opposed to an l-cysteine exporter, and further elucidate a link between oxidative stress, antibiotic resistance, and sulfur metabolism.

摘要

l-半胱氨酸是所有细菌含硫生物分子的来源。然而,由于 l-半胱氨酸具有还原铁并驱动有害芬顿化学的倾向,因此细胞质中 l-半胱氨酸的水平必须严格控制。有人提出,在细胞色素 -I 末端氧化酶的组成部分 CydDC 复合物中,将过量的 l-半胱氨酸从细胞质运送到周质,从而维持氧化还原平衡。在这里,我们通过证明 CydDC 的替代功能提供了证据,即表型与真正的 l-半胱氨酸外排体不同,与 l-胱氨酸导入体相似。 从强 pLtetO-1 启动子(P)诱导 ,而不是 或 ,会导致细胞外 l-半胱氨酸水平升高,而诱导 或 会导致细胞质 l-半胱氨酸积累。一致地,失活 使细胞对过氧化氢和氨基糖苷类抗生素具有抗性。相比之下,诱导 使细胞对氧化应激和氨基糖苷类药物敏感,而过表达 可以抑制这种敏感性。此外,铁摄取调节剂( 在 P- 或 P- 细胞中的失活会导致存活急剧丧失,而过氧化氢酶()的过表达抑制了这两种菌株对 HO 的敏感性。这些结果确立了 CydDC 作为细胞质胱氨酸的还原剂,而不是 l-半胱氨酸外排体,并进一步阐明了氧化应激、抗生素耐药性和硫代谢之间的联系。

相似文献

4
Mechanism of HS-mediated protection against oxidative stress in .HS 介导的抗氧化应激保护机制在 中的作用。
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6022-6027. doi: 10.1073/pnas.1703576114. Epub 2017 May 22.
5
The CydDC family of transporters.CydDC 家族转运蛋白。
Res Microbiol. 2019 Nov-Dec;170(8):407-416. doi: 10.1016/j.resmic.2019.06.003. Epub 2019 Jul 3.

引用本文的文献

本文引用的文献

3
Mechanism of HS-mediated protection against oxidative stress in .HS 介导的抗氧化应激保护机制在 中的作用。
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6022-6027. doi: 10.1073/pnas.1703576114. Epub 2017 May 22.
10
Unraveling the physiological complexities of antibiotic lethality.揭示抗生素致死性的生理复杂性。
Annu Rev Pharmacol Toxicol. 2015;55:313-32. doi: 10.1146/annurev-pharmtox-010814-124712. Epub 2014 Sep 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验