Suppr超能文献

用于估计微阵列基因表达研究中错误拒绝数量的贝塔-二项分布。

The Beta-Binomial Distribution for Estimating the Number of False Rejections in Microarray Gene Expression Studies.

作者信息

Hunt Daniel L, Cheng Cheng, Pounds Stanley

机构信息

Department of Biostatistics, St. Jude Children's Research Hospital, 332 N. Lauderdale St., Memphis, TN 38105-2794 USA.

出版信息

Comput Stat Data Anal. 2009 Mar 15;53(5):1688-1700. doi: 10.1016/j.csda.2008.01.013.

Abstract

In differential expression analysis of microarray data, it is common to assume independence among null hypotheses (and thus gene expression levels). The independence assumption implies that the number of false rejections V follows a binomial distribution and leads to an estimator of the empirical false discovery rate (eFDR). The number of false rejections V is modeled with the beta-binomial distribution. An estimator of the beta-binomial false discovery rate (bbFDR) is then derived. This approach accounts for how the correlation among non-differentially expressed genes influences the distribution of V. Permutations are used to generate the observed values for V under the null hypotheses and a beta-binomial distribution is fit to the values of V. The bbFDR estimator is compared to the eFDR estimator in simulation studies of correlated non-differentially expressed genes and is found to outperform the eFDR for certain scenarios. As an example, this method is also used to perform an analysis that compares the gene expression of soft tissue sarcoma samples to normal tissue samples.

摘要

在微阵列数据的差异表达分析中,通常假定零假设(以及基因表达水平)之间相互独立。独立性假设意味着错误拒绝的数量V服从二项分布,并由此得出经验性错误发现率(eFDR)的估计值。错误拒绝的数量V采用β-二项分布进行建模。然后推导出β-二项式错误发现率(bbFDR)的估计值。该方法考虑了非差异表达基因之间的相关性如何影响V的分布。通过排列生成零假设下V的观测值,并将β-二项分布拟合到V的值。在相关非差异表达基因的模拟研究中,将bbFDR估计值与eFDR估计值进行比较,发现在某些情况下bbFDR优于eFDR。例如,该方法还用于进行一项分析,比较软组织肉瘤样本与正常组织样本的基因表达。

相似文献

5
Expected Power for the False Discovery Rate with Independence.具有独立性的错误发现率的预期功效。
Commun Stat Theory Methods. 2008 Jan;37(12):1855-1866. doi: 10.1080/03610920801893731.

引用本文的文献

1
Extra-binomial variation approach for analysis of pooled DNA sequencing data.基于超二项分布变异的合并 DNA 测序数据分析方法
Bioinformatics. 2012 Nov 15;28(22):2898-904. doi: 10.1093/bioinformatics/bts553. Epub 2012 Sep 12.

本文引用的文献

6
Improving false discovery rate estimation.改进错误发现率估计。
Bioinformatics. 2004 Jul 22;20(11):1737-45. doi: 10.1093/bioinformatics/bth160. Epub 2004 Feb 26.
9
Statistical significance for genomewide studies.全基因组研究的统计学显著性
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5. doi: 10.1073/pnas.1530509100. Epub 2003 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验