Suppr超能文献

一种意识的丘脑网状网络模型。

A thalamic reticular networking model of consciousness.

作者信息

Min Byoung-Kyong

机构信息

Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.

出版信息

Theor Biol Med Model. 2010 Mar 30;7:10. doi: 10.1186/1742-4682-7-10.

Abstract

[BACKGROUND]: It is reasonable to consider the thalamus a primary candidate for the location of consciousness, given that the thalamus has been referred to as the gateway of nearly all sensory inputs to the corresponding cortical areas. Interestingly, in an early stage of brain development, communicative innervations between the dorsal thalamus and telencephalon must pass through the ventral thalamus, the major derivative of which is the thalamic reticular nucleus (TRN). The TRN occupies a striking control position in the brain, sending inhibitory axons back to the thalamus, roughly to the same region where they receive afferents. [HYPOTHESES]: The present study hypothesizes that the TRN plays a pivotal role in dynamic attention by controlling thalamocortical synchronization. The TRN is thus viewed as a functional networking filter to regulate conscious perception, which is possibly embedded in thalamocortical networks. Based on the anatomical structures and connections, modality-specific sectors of the TRN and the thalamus appear to be responsible for modality-specific perceptual representation. Furthermore, the coarsely overlapped topographic maps of the TRN appear to be associated with cross-modal or unitary conscious awareness. Throughout the latticework structure of the TRN, conscious perception could be accomplished and elaborated through accumulating intercommunicative processing across the first-order input signal and the higher-order signals from its functionally associated cortices. As the higher-order relay signals run cumulatively through the relevant thalamocortical loops, conscious awareness becomes more refined and sophisticated. [CONCLUSIONS]: I propose that the thalamocortical integrative communication across first- and higher-order information circuits and repeated feedback looping may account for our conscious awareness. This TRN-modulation hypothesis for conscious awareness provides a comprehensive rationale regarding previously reported psychological phenomena and neurological symptoms such as blindsight, neglect, the priming effect, the threshold/duration problem, and TRN-impairment resembling coma. This hypothesis can be tested by neurosurgical investigations of thalamocortical loops via the TRN, while simultaneously evaluating the degree to which conscious perception depends on the severity of impairment in a TRN-modulated network.

摘要

[背景]:鉴于丘脑被称为几乎所有感觉输入通向相应皮质区域的门户,将丘脑视为意识位置的主要候选者是合理的。有趣的是,在大脑发育的早期阶段,背侧丘脑与端脑之间的通信神经支配必须经过腹侧丘脑,腹侧丘脑的主要衍生物是丘脑网状核(TRN)。TRN在大脑中占据着显著的控制位置,将抑制性轴突发送回丘脑,大致回到它们接收传入神经的同一区域。[假设]:本研究假设TRN通过控制丘脑皮质同步在动态注意力中起关键作用。因此,TRN被视为调节意识感知的功能性网络过滤器,可能嵌入在丘脑皮质网络中。基于解剖结构和连接,TRN和丘脑的特定模态扇区似乎负责特定模态的感知表征。此外,TRN粗略重叠的地形图似乎与跨模态或统一的意识觉知相关。在TRN的整个晶格结构中,意识感知可以通过累积跨一阶输入信号和来自其功能相关皮质的高阶信号的交互处理来完成和细化。随着高阶中继信号在相关丘脑皮质环路中累积运行,意识觉知变得更加精细和复杂。[结论]:我提出,一阶和高阶信息回路之间的丘脑皮质整合通信以及反复的反馈循环可能解释我们的意识觉知。这种关于意识觉知的TRN调制假设为先前报道的心理现象和神经症状提供了全面的理论依据,如盲视、忽视、启动效应、阈值/持续时间问题以及类似于昏迷的TRN损伤。这一假设可以通过对经由TRN的丘脑皮质环路进行神经外科研究来检验,同时评估意识感知在多大程度上取决于TRN调制网络中的损伤严重程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8588/2857829/28ad945a0470/1742-4682-7-10-1.jpg

相似文献

1
A thalamic reticular networking model of consciousness.
Theor Biol Med Model. 2010 Mar 30;7:10. doi: 10.1186/1742-4682-7-10.
2
Functional organization of the thalamic input to the thalamic reticular nucleus.
J Neurosci. 2011 May 4;31(18):6791-9. doi: 10.1523/JNEUROSCI.3073-10.2011.
3
Visual Deprivation Selectively Reduces Thalamic Reticular Nucleus-Mediated Inhibition of the Auditory Thalamus in Adults.
J Neurosci. 2022 Oct 19;42(42):7921-7930. doi: 10.1523/JNEUROSCI.2032-21.2022. Epub 2022 Sep 7.
5
Thalamic reticular nucleus in the thalamocortical loop.
Neurosci Res. 2020 Jul;156:32-40. doi: 10.1016/j.neures.2019.12.004. Epub 2019 Dec 5.
6
Thalamocortical inhibitory dynamics support conscious perception.
Neuroimage. 2020 Oct 15;220:117066. doi: 10.1016/j.neuroimage.2020.117066. Epub 2020 Jun 18.
7
Synaptic properties of the feedback connections from the thalamic reticular nucleus to the dorsal lateral geniculate nucleus.
J Neurophysiol. 2020 Aug 1;124(2):404-417. doi: 10.1152/jn.00757.2019. Epub 2020 Jul 1.
8
Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
Neuroscience. 2011 Oct 13;193:122-31. doi: 10.1016/j.neuroscience.2011.07.040. Epub 2011 Jul 27.
9
Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat.
J Comp Neurol. 2001 Nov 26;440(4):321-41. doi: 10.1002/cne.1389.

引用本文的文献

1
Neurobiological emergentism: sentience as an emergent process and the experiential gap.
Front Psychol. 2025 Aug 1;16:1528982. doi: 10.3389/fpsyg.2025.1528982. eCollection 2025.
3
Emergent Aspects of the Integration of Sensory and Motor Functions.
Brain Sci. 2025 Feb 7;15(2):162. doi: 10.3390/brainsci15020162.
4
Synthetic consciousness architecture.
Front Robot AI. 2024 Nov 28;11:1437496. doi: 10.3389/frobt.2024.1437496. eCollection 2024.
5
Propofol modulates neural dynamics of thalamo-cortical system associated with anesthetic levels in rats.
Cogn Neurodyn. 2023 Dec;17(6):1541-1559. doi: 10.1007/s11571-022-09912-0. Epub 2022 Nov 22.
7
The thalamus in psychosis spectrum disorder.
Front Neurosci. 2023 Apr 13;17:1163600. doi: 10.3389/fnins.2023.1163600. eCollection 2023.
8
Therapeutic Neuromodulation toward a Critical State May Serve as a General Treatment Strategy.
Biomedicines. 2022 Sep 18;10(9):2317. doi: 10.3390/biomedicines10092317.
9
Fluctuations in Arousal Correlate with Neural Activity in the Human Thalamus.
Cereb Cortex Commun. 2021 Sep 1;2(3):tgab055. doi: 10.1093/texcom/tgab055. eCollection 2021.
10
A Traditional Scientific Perspective on the Integrated Information Theory of Consciousness.
Entropy (Basel). 2021 May 22;23(6):650. doi: 10.3390/e23060650.

本文引用的文献

1
Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.
Cogn Sci. 2014 Aug;38(6):1024-77. doi: 10.1111/cogs.12148. Epub 2014 Aug 4.
2
Change detection by thalamic reticular neurons.
Nat Neurosci. 2009 Sep;12(9):1165-70. doi: 10.1038/nn.2373. Epub 2009 Aug 16.
6
Synchrony in the interconnected circuitry of the thalamus and cerebral cortex.
Ann N Y Acad Sci. 2009 Mar;1157:10-23. doi: 10.1111/j.1749-6632.2009.04534.x.
7
Role of right posterior parietal cortex in maintaining attention to spatial locations over time.
Brain. 2009 Mar;132(Pt 3):645-60. doi: 10.1093/brain/awn350. Epub 2009 Jan 21.
8
Frontal cortex mediates unconsciously triggered inhibitory control.
J Neurosci. 2008 Aug 6;28(32):8053-62. doi: 10.1523/JNEUROSCI.1278-08.2008.
9
Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems.
Cortex. 2008 Sep;44(8):1037-66. doi: 10.1016/j.cortex.2008.04.004. Epub 2008 May 23.
10
Two differential frequency-dependent mechanisms regulating tonic firing of thalamic reticular neurons.
Eur J Neurosci. 2008 May;27(10):2643-56. doi: 10.1111/j.1460-9568.2008.06246.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验