RIKEN Plant Science Center, Yokohama, Kanagawa, Japan.
Amino Acids. 2010 Oct;39(4):1013-21. doi: 10.1007/s00726-010-0562-y. Epub 2010 Mar 31.
Methionine (Met) is an essential amino acid for all organisms. In plants, Met also functions as a precursor of plant hormones, polyamines, and defense metabolites. The regulatory mechanism of Met biosynthesis is highly complex and, despite its great importance, remains unclear. To investigate how accumulation of Met influences metabolism as a whole in Arabidopsis, three methionine over-accumulation (mto) mutants were examined using a gas chromatography-mass spectrometry-based metabolomics approach. Multivariate statistical analyses of the three mto mutants (mto1, mto2, and mto3) revealed distinct metabolomic phenotypes. Orthogonal projection to latent structures-discriminant analysis highlighted discriminative metabolites contributing to the separation of each mutant and the corresponding control samples. Though Met accumulation in mto1 had no dramatic effect on other metabolic pathways except for the aspartate family, metabolite profiles of mto2 and mto3 indicated that several extensive pathways were affected in addition to over-accumulation of Met. The pronounced changes in metabolic pathways in both mto2 and mto3 were associated with polyamines. The findings suggest that our metabolomics approach not only can reveal the impact of Met over-accumulation on metabolism, but also may provide clues to identify crucial pathways for regulation of metabolism in plants.
蛋氨酸(Met)是所有生物体必需的氨基酸。在植物中,Met 还作为植物激素、多胺和防御代谢物的前体发挥作用。Met 生物合成的调控机制非常复杂,尽管它非常重要,但仍然不清楚。为了研究 Met 的积累如何整体影响拟南芥的代谢,使用基于气相色谱-质谱的代谢组学方法研究了三个蛋氨酸过度积累(mto)突变体。对三个 mto 突变体(mto1、mto2 和 mto3)进行的多元统计分析揭示了不同的代谢组学表型。正交投影到潜在结构判别分析突出了对每个突变体和相应对照样品分离有贡献的有区别的代谢物。虽然 mto1 中 Met 的积累除了天冬氨酸家族外对其他代谢途径没有明显影响,但 mto2 和 mto3 的代谢物图谱表明,除了 Met 的过度积累外,还有几个广泛的途径受到影响。mto2 和 mto3 中代谢途径的明显变化与多胺有关。这些发现表明,我们的代谢组学方法不仅可以揭示 Met 过度积累对代谢的影响,还可以为确定植物代谢调控的关键途径提供线索。