Center for Food Safety-IFSE and Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA.
J Sci Food Agric. 2010 Apr 15;90(5):870-6. doi: 10.1002/jsfa.3897.
Due to their low solubility in water, oil-based bioactive compounds require dispersion in a surface-active agent or appropriate solvents to ensure maximum contact with microorganisms. These combinations, however, may change their physical and/or chemical characteristics and consequently alter the desired functionality. The objective of this study was to determine the impact of selected dispersing agents, ethanol, dimethyl sulfoxide (DMSO), and Tween-80, on cold-pressed terpeneless (CPT) Valencia orange oil to function as a free radical scavenger and an antimicrobial food additive.
When dissolved in ethanol or DMSO, the orange oil fraction had similar minimum inhibitory concentrations (MIC) for Listeria monocytogenes ATCC 19 115 (0.3% and 0.25% v/v respectively), which were significantly lower (P <or= 0.5) than the MIC for Salmonella typhimurium ATCC 14 028 (1% v/v). Both ethanol and DMSO oil dispersion systems exhibited an intermediate MIC (0.75% v/v) for Lactobacillus plantarum WCFS1. The orange oil (up to 3%) in an aqueous solution of 0.1% Tween-80 yielded no inhibitory activities against any of the test bacteria. However, the 1% natural orange oil dispersed in Tween-80 exhibited 56.86% 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical inhibition versus 18.37% and 16.60% when the same level of orange oil was dissolved in DMSO or ethanol, respectively. At the same orange oil concentration, the oil/Tween-80 suspension yielded 57.92% neutralization of hydroxyl radicals. This represents 71.37% of the mannitol antioxidant activity, which was used as a positive control.
These findings suggest that Tween-80 is an appropriate dispersing agent only if the antioxidant functionality is desired. If both antimicrobial and antioxidant properties are needed, the CPT Valencia orange oil should be dispersed in either DMSO or ethanol.
由于油基生物活性化合物在水中的溶解度较低,因此需要分散在表面活性剂或适当的溶剂中,以确保与微生物的最大接触。然而,这些组合可能会改变它们的物理和/或化学特性,并因此改变所需的功能。本研究的目的是确定选定的分散剂乙醇、二甲基亚砜(DMSO)和吐温-80 对冷榨无萜橙油(CPT)的影响,以作为自由基清除剂和抗菌食品添加剂。
当溶解在乙醇或 DMSO 中时,橙油部分对单核细胞增生李斯特菌 ATCC 19115 的最低抑菌浓度(MIC)相似(分别为 0.3%和 0.25%v/v),显著低于鼠伤寒沙门氏菌 ATCC 14028 的 MIC(1%v/v)(P≤0.5)。乙醇和 DMSO 油分散体系对植物乳杆菌 WCFS1 的 MIC 均为中等(0.75%v/v)。在 0.1%吐温-80 的水溶液中,高达 3%的橙油对任何测试细菌均无抑制活性。然而,在 Tween-80 中分散的 1%天然橙油对 2,2-二苯基-1-苦基肼(DPPH)自由基的抑制率为 56.86%,而相同浓度的橙油分别溶解在 DMSO 或乙醇中时,抑制率为 18.37%和 16.60%。在相同的橙油浓度下,油/吐温-80 悬浮液对羟基自由基的中和率为 57.92%。这代表了甘露醇抗氧化剂活性的 71.37%,甘露醇被用作阳性对照。
如果需要抗氧化功能,则表明 Tween-80 是一种合适的分散剂。如果需要同时具有抗菌和抗氧化性能,则 CPT 瓦伦西亚橙油应分散在 DMSO 或乙醇中。