Suppr超能文献

打破权衡:雨林蝙蝠在接近猎物时最大限度地提高回声定位叫声的带宽和重复率。

Breaking the trade-off: rainforest bats maximize bandwidth and repetition rate of echolocation calls as they approach prey.

机构信息

Sensory Ecology Group, Max Planck Institute for Ornithology, 82319 Seewiesen, Germany.

出版信息

Biol Lett. 2010 Oct 23;6(5):604-9. doi: 10.1098/rsbl.2010.0114. Epub 2010 Mar 31.

Abstract

Both mammals and birds experience a performance trade-off between producing vocalizations with high bandwidths and at high repetition rate. Echolocating bats drastically increase repetition rate from 2-20 calls s(-1) up to about 170 calls s(-1) prior to intercepting airborne prey in order to accurately track prey movement. In turn, bandwidth drops to about 10-30 kHz for the calls of this 'final buzz'. We have now discovered that Southeast Asian rainforest bats (in the vespertilionid subfamilies Kerivoulinae and Murininae) are able to maintain high call bandwidths at very high repetition rates throughout approach to prey. Five species of Kerivoula and Phoniscus produced call bandwidths of between 78 and 170 kHz at repetition rates of 140-200 calls s(-1) and two of Murina at 80 calls s(-1). The 'typical' and distinct drop in call frequency was present in none of the seven species. This stands in striking contrast to our present view of echolocation during approach to prey in insectivorous bats, which was established largely based on European and American members of the same bat family, the Vespertilionidae. Buzz calls of Kerivoula pellucida had mean bandwidths of 170 kHz and attained maximum starting frequencies of 250 kHz which makes them the most broadband and most highly pitched tonal animal vocalization known to date. We suggest that the extreme vocal performance of the Kerivoulinae and Murininae evolved as an adaptation to echolocating and tracking arthropods in the dense rainforest understorey.

摘要

哺乳动物和鸟类在产生高带宽和高重复率的声音时都会经历性能上的权衡。回声定位蝙蝠在拦截空中猎物之前,会将重复率从每秒 2-20 次急剧增加到每秒约 170 次,以准确跟踪猎物的运动。反过来,带宽会下降到大约 10-30 kHz,用于这种“最终嗡嗡声”的叫声。我们现在发现,东南亚雨林蝙蝠(在蝙蝠科的 Kerivoulinae 和 Murininae 亚科中)能够在接近猎物时以非常高的重复率保持高的叫声带宽。五种 Kerivoula 和 Phoniscus 蝙蝠在每秒 140-200 次的重复率下产生 78 到 170 kHz 的叫声带宽,两种 Murina 蝙蝠的重复率为每秒 80 次。在这七种蝙蝠中,没有一种出现“典型”和明显的叫声频率下降。这与我们目前对食虫蝙蝠在接近猎物时的回声定位的看法形成了鲜明的对比,这种看法主要是基于同一蝙蝠科(蝙蝠科)的欧洲和美洲成员建立的。Kerivoula pellucida 的嗡嗡声的平均带宽为 170 kHz,最大起始频率为 250 kHz,这使它们成为迄今为止已知的最宽带和最高音调的动物发声。我们认为,Kerivoulinae 和 Murininae 的极端发声性能是作为一种适应,以在茂密的雨林下层中回声定位和跟踪节肢动物而进化的。

相似文献

1
2
Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8118-23. doi: 10.1073/pnas.1419943112. Epub 2015 Jun 15.
3
Echolocating bats emit terminal phase buzz calls while drinking on the wing.
Behav Processes. 2013 Sep;98:58-60. doi: 10.1016/j.beproc.2013.05.007. Epub 2013 May 21.
4
Echolocation and passive listening by foraging mouse-eared bats Myotis myotis and M. blythii.
J Exp Biol. 2007 Jan;210(Pt 1):166-76. doi: 10.1242/jeb.02644.
5
How the bat got its buzz.
Biol Lett. 2013 Jan 8;9(2):20121031. doi: 10.1098/rsbl.2012.1031. Print 2013 Apr 23.
6
Fine-tuned echolocation and capture-flight of Myotis capaccinii when facing different-sized insect and fish prey.
J Exp Biol. 2014 Sep 15;217(Pt 18):3318-25. doi: 10.1242/jeb.104992. Epub 2014 Jul 10.
8
Echolocating bats cry out loud to detect their prey.
PLoS One. 2008 Apr 30;3(4):e2036. doi: 10.1371/journal.pone.0002036.
9
Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):4122-7. doi: 10.1073/pnas.1424457112. Epub 2015 Mar 16.
10
Convergent acoustic field of view in echolocating bats.
Nature. 2013 Jan 3;493(7430):93-6. doi: 10.1038/nature11664. Epub 2012 Nov 21.

引用本文的文献

1
Do you have enough space? Habitat selection of insectivorous cave-dwelling bats in fragmented landscapes of Eastern Amazon.
PLoS One. 2025 Jan 9;20(1):e0296137. doi: 10.1371/journal.pone.0296137. eCollection 2025.
2
Bats expand their vocal range by recruiting different laryngeal structures for echolocation and social communication.
PLoS Biol. 2022 Nov 29;20(11):e3001881. doi: 10.1371/journal.pbio.3001881. eCollection 2022 Nov.
3
Echolocating bats rely on an innate speed-of-sound reference.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2024352118.
4
Comparison of methods for rhythm analysis of complex animals' acoustic signals.
PLoS Comput Biol. 2020 Apr 8;16(4):e1007755. doi: 10.1371/journal.pcbi.1007755. eCollection 2020 Apr.
5
Ridge number in bat ears is related to both guild membership and ear length.
PLoS One. 2018 Jul 25;13(7):e0200255. doi: 10.1371/journal.pone.0200255. eCollection 2018.
7
Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar.
R Soc Open Sci. 2016 Aug 10;3(8):160199. doi: 10.1098/rsos.160199. eCollection 2016 Aug.
8
Dynamics of the echolocation beam during prey pursuit in aerial hawking bats.
Proc Natl Acad Sci U S A. 2015 Jun 30;112(26):8118-23. doi: 10.1073/pnas.1419943112. Epub 2015 Jun 15.
10
Hawkmoths produce anti-bat ultrasound.
Biol Lett. 2013 Jul 3;9(4):20130161. doi: 10.1098/rsbl.2013.0161. Print 2013 Aug 23.

本文引用的文献

2
Aerial hawking and landing: approach behaviour in Natterer's bats, Myotis nattereri (Kuhl 1818).
J Exp Biol. 2007 Dec;210(Pt 24):4457-64. doi: 10.1242/jeb.007435.
3
Echolocation signals reflect niche differentiation in five sympatric congeneric bat species.
Nature. 2004 Jun 10;429(6992):657-61. doi: 10.1038/nature02547.
4
Directional female preference for an exaggerated male trait in canary (Serinus canaria) song.
Proc Biol Sci. 2002 Dec 22;269(1509):2525-31. doi: 10.1098/rspb.2002.2192.
5
Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory.
J Acoust Soc Am. 2000 Nov;108(5 Pt 1):2419-29. doi: 10.1121/1.1315295.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验