Suppr超能文献

利用高光谱遥感技术和相关叶片色素变化检测无症状叶片中的甘蔗黄叶病毒感染。

Detecting Sugarcane yellow leaf virus infection in asymptomatic leaves with hyperspectral remote sensing and associated leaf pigment changes.

机构信息

USDA-ARS, Sugarcane Research Laboratory, 5883 USDA Rd., Houma, LA 70360, United States.

出版信息

J Virol Methods. 2010 Aug;167(2):140-5. doi: 10.1016/j.jviromet.2010.03.024. Epub 2010 Mar 31.

Abstract

Sugarcane infected with Sugarcane yellow leaf virus (SCYLV) rarely produces visual symptoms until late in the growing season. High-resolution, hyperspectral reflectance data from SCYLV-infected and non-infected leaves of two cultivars, LCP 85-384 and Ho 95-988, were measured and analyzed on 13 July, 12 October, and 4 November 2005. All plants were asymptomatic. Infection was determined by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Results from discriminant analysis showed that leaf reflectance was effective at predicting SCYLV infection in 73% of the cases in both cultivars using resubstitution and 63% and 62% in LCP 85-384 and Ho 95-988, respectively, using cross-validation. Predictive equations were improved when data from sampling dates were analyzed individually. SCYLV infection influenced the concentration of several leaf pigments including violaxanthin, beta-carotene, neoxanthin, and chlorophyll a. Pigment data were effective at predicting SCYLV infection in 80% of the samples in the combined data set using the derived discriminant function with resubstitution, and 71% with cross-validation. Although further research is needed to improve the accuracy of the predictive equations, the results of this study demonstrate the potential application of hyperspectral remote sensing as a rapid, field-based method of identifying SCYLV-infected sugarcane plants prior to symptom expression.

摘要

受甘蔗黄叶病毒(SCYLV)感染的甘蔗在生长季节后期才会出现明显症状。2005 年 7 月 13 日、10 月 12 日和 11 月 4 日,对两个品种 LCP 85-384 和 Ho 95-988 的受感染和未感染叶片进行了高分辨率、高光谱反射率数据测量和分析,所有植株均无症状。采用反转录聚合酶链反应(RT-PCR)分析确定了感染情况。判别分析结果表明,在两个品种中,73%的病例可以通过叶片反射率预测 SCYLV 感染,在 LCP 85-384 和 Ho 95-988 中,分别有 63%和 62%可以通过交叉验证预测。当分别分析采样日期的数据时,预测方程得到了改善。SCYLV 感染影响了几种叶片色素的浓度,包括玉米黄质、β-胡萝卜素、新黄质和叶绿素 a。在组合数据集的 80%的样本中,使用重新代入推导的判别函数,色素数据可以有效预测 71%的 SCYLV 感染,使用交叉验证。尽管需要进一步研究来提高预测方程的准确性,但这项研究的结果表明,高光谱遥感作为一种在出现症状之前识别受感染甘蔗植株的快速、现场方法具有应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验