Laboratoire de Mathématiques Appliquées aux Systèmes, Ecole Centrale Paris, 92290 Châtenay-Malabry, France.
Phys Rev Lett. 2009 Nov 27;103(22):228701. doi: 10.1103/PhysRevLett.103.228701. Epub 2009 Nov 23.
A mechanism is proposed for the appearance of power-law distributions in various complex systems. It is shown that in a conservative mechanical system composed of subsystems with different numbers of degrees of freedom a robust power-law tail can appear in the equilibrium distribution of energy as a result of certain superpositions of the canonical equilibrium energy densities of the subsystems. The derivation only uses a variational principle based on the Boltzmann entropy, without assumptions outside the framework of canonical equilibrium statistical mechanics. Two examples are discussed, free diffusion on a complex network and a kinetic model of wealth exchange. The mechanism is illustrated in the general case through an exactly solvable mechanical model of a dimensionally heterogeneous system.
提出了一种在各种复杂系统中出现幂律分布的机制。结果表明,在由具有不同自由度数的子系统组成的保守力学系统中,由于子系统的正则平衡能量密度的某些叠加,可以在能量的平衡分布中出现稳健的幂律尾部。该推导仅使用基于玻尔兹曼熵的变分原理,而不依赖于正则平衡统计力学框架之外的假设。讨论了两个例子,即复杂网络上的自由扩散和财富交换的动力学模型。通过一个可精确求解的具有维度异质性的系统力学模型,在一般情况下说明了该机制。