Artificial Intelligence Group, TU Berlin, Berlin, Germany.
Phys Rev Lett. 2009 Dec 4;103(23):230601. doi: 10.1103/PhysRevLett.103.230601. Epub 2009 Dec 2.
We address the problem of estimating unknown model parameters and state variables in stochastic reaction processes when only sparse and noisy measurements are available. Using an asymptotic system size expansion for the backward equation, we derive an efficient approximation for this problem. We demonstrate the validity of our approach on model systems and generalize our method to the case when some state variables are not observed.
我们解决了在仅有稀疏和噪声测量值的情况下,估计随机反应过程中未知模型参数和状态变量的问题。通过对反向方程进行渐近系统尺寸扩展,我们为这个问题推导出了一个有效的近似方法。我们在模型系统上验证了我们方法的有效性,并将我们的方法推广到一些状态变量未被观测的情况。