Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
J Biomol NMR. 2010 May;47(1):65-77. doi: 10.1007/s10858-010-9411-2. Epub 2010 Apr 7.
Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D (15)N- and (13)C-edited NOESY-HSQC spectra of human ubiquitin.
通过对稀疏采样的 nD NMR 信号应用多维傅里叶变换 (MFT) 获得的谱图通常由于数据缺失而受到干扰。本文在模拟和实验中对此现象进行了研究。详细讨论了一种用于稀疏网格 NMR 数据集伪影抑制的有效迭代算法。它包括基于统计方法的自动峰识别。该结果使人们能够在保留随机采样优势(即在间接测量维度上具有更高的分辨率)的情况下,研究具有高强度峰值的 NMR 谱。实验实例包括人泛素的 3D(15)N-和(13)C 编辑 NOESY-HSQC 谱。