Suppr超能文献

采用稀疏同心壳采样和快速傅里叶变换- CLEAN算法的高分辨率4D光谱学。

High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

作者信息

Coggins Brian E, Zhou Pei

机构信息

Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.

出版信息

J Biomol NMR. 2008 Dec;42(4):225-39. doi: 10.1007/s10858-008-9275-x. Epub 2008 Oct 14.

Abstract

Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

摘要

近期为缩短多维核磁共振实验测量时间所做的努力推动了各种新型采样和数据处理程序的发展。我们最近描述了用于三维核磁共振实验的同心环采样,作为多维离散傅里叶变换处理的输入,它优于径向采样。在此,我们报告将此方法扩展到四维光谱学,即随机同心壳采样(RCSS),其中间接维度的采样点位于同心壳上,并利用角度空间中的随机旋转来避免相干伪影。通过模拟,我们表明即使采样点数量非常有限,RCSS产生的伪影水平也非常低。RCSS采样模式可适配到精细的矩形网格,以便在数据处理中使用快速傅里叶变换,而伪影水平无明显增加。利用射电天文学中开发的迭代CLEAN算法,这些伪影可进一步降低到噪声水平。我们在蛋白质G的B1结构域的高分辨率四维HCCH - TOCSY谱上演示了这些方法,仅使用了达到该分辨率常规所需采样量的1.2%。使用多维快速傅里叶变换而非慢速离散傅里叶变换进行初始数据处理和后续CLEAN操作,显著减少了计算时间,产生的伪影水平与真实光谱噪声水平相当。

相似文献

1
High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.
J Biomol NMR. 2008 Dec;42(4):225-39. doi: 10.1007/s10858-008-9275-x. Epub 2008 Oct 14.
2
Al NMR: a novel NMR data processing program optimized for sparse sampling.
J Biomol NMR. 2012 Jan;52(1):79-89. doi: 10.1007/s10858-011-9584-3. Epub 2011 Nov 15.
3
Fast acquisition of high resolution 4-D amide-amide NOESY with diagonal suppression, sparse sampling and FFT-CLEAN.
J Magn Reson. 2010 May;204(1):173-8. doi: 10.1016/j.jmr.2010.02.017. Epub 2010 Feb 21.
4
Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets.
J Biomol NMR. 2010 May;47(1):65-77. doi: 10.1007/s10858-010-9411-2. Epub 2010 Apr 7.
5
Sampling of the NMR time domain along concentric rings.
J Magn Reson. 2007 Feb;184(2):207-21. doi: 10.1016/j.jmr.2006.10.002. Epub 2006 Oct 27.
6
Fast multi-dimensional NMR acquisition and processing using the sparse FFT.
J Biomol NMR. 2015 Sep;63(1):9-19. doi: 10.1007/s10858-015-9952-5. Epub 2015 Jun 30.
7
High fidelity sampling schedules for NMR spectra of high dynamic range.
J Magn Reson. 2022 Jun;339:107228. doi: 10.1016/j.jmr.2022.107228. Epub 2022 Apr 26.
8
Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR.
Prog Nucl Magn Reson Spectrosc. 2014 Nov;83:21-41. doi: 10.1016/j.pnmrs.2014.09.002. Epub 2014 Oct 13.
9
Perspectives in magnetic resonance: NMR in the post-FFT era.
J Magn Reson. 2014 Apr;241:60-73. doi: 10.1016/j.jmr.2013.11.014.
10
Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction.
J Biomol NMR. 2006 Sep;36(1):45-54. doi: 10.1007/s10858-006-9066-1. Epub 2006 Sep 9.

引用本文的文献

1
Linear discriminant analysis reveals hidden patterns in NMR chemical shifts of intrinsically disordered proteins.
PLoS Comput Biol. 2022 Oct 6;18(10):e1010258. doi: 10.1371/journal.pcbi.1010258. eCollection 2022 Oct.
3
Clustered sparsity and Poisson-gap sampling.
J Biomol NMR. 2021 Dec;75(10-12):401-416. doi: 10.1007/s10858-021-00385-7. Epub 2021 Nov 5.
4
Non-Uniform Sampling in NMR Spectroscopy and the Preservation of Spectral Knowledge in the Time and Frequency Domains.
J Phys Chem A. 2020 Jul 2;124(26):5474-5486. doi: 10.1021/acs.jpca.0c02930. Epub 2020 Jun 18.
5
6
Importance of time-ordered non-uniform sampling of multi-dimensional NMR spectra of Aβ peptide under aggregating conditions.
J Biomol NMR. 2019 Sep;73(8-9):429-441. doi: 10.1007/s10858-019-00235-7. Epub 2019 Aug 12.
7
Monitoring Hydrogenation Reactions using Benchtop 2D NMR with Extraordinary Sensitivity and Spectral Resolution.
ChemistryOpen. 2019 Feb 14;8(2):196-200. doi: 10.1002/open.201800294. eCollection 2019 Feb.
8
N, C and H resonance assignments of FKBP12 proteins from the pathogenic fungi Mucor circinelloides and Aspergillus fumigatus.
Biomol NMR Assign. 2019 Apr;13(1):207-212. doi: 10.1007/s12104-019-09878-x. Epub 2019 Feb 1.
10
Interpolating and extrapolating with hmsIST: seeking a t for optimal sensitivity, resolution and frequency accuracy.
J Biomol NMR. 2017 Jun;68(2):139-154. doi: 10.1007/s10858-017-0103-z. Epub 2017 Mar 22.

本文引用的文献

1
Randomization improves sparse sampling in multidimensional NMR.
J Magn Reson. 2008 Aug;193(2):317-20. doi: 10.1016/j.jmr.2008.05.011. Epub 2008 May 21.
2
Optimization of random time domain sampling in multidimensional NMR.
J Magn Reson. 2008 May;192(1):123-30. doi: 10.1016/j.jmr.2008.02.003. Epub 2008 Feb 12.
3
Lineshapes and artifacts in Multidimensional Fourier Transform of arbitrary sampled NMR data sets.
J Magn Reson. 2007 Oct;188(2):344-56. doi: 10.1016/j.jmr.2007.08.005. Epub 2007 Aug 15.
4
Optimized 3D-NMR sampling for resonance assignment of partially unfolded proteins.
J Magn Reson. 2007 May;186(1):142-9. doi: 10.1016/j.jmr.2007.01.013. Epub 2007 Jan 23.
5
Sampling of the NMR time domain along concentric rings.
J Magn Reson. 2007 Feb;184(2):207-21. doi: 10.1016/j.jmr.2006.10.002. Epub 2006 Oct 27.
6
Random sampling of evolution time space and Fourier transform processing.
J Biomol NMR. 2006 Nov;36(3):157-68. doi: 10.1007/s10858-006-9077-y. Epub 2006 Sep 21.
8
Processing of ND NMR spectra sampled in polar coordinates: a simple Fourier transform instead of a reconstruction.
J Biomol NMR. 2006 Sep;36(1):45-54. doi: 10.1007/s10858-006-9066-1. Epub 2006 Sep 9.
9
Polar Fourier transforms of radially sampled NMR data.
J Magn Reson. 2006 Sep;182(1):84-95. doi: 10.1016/j.jmr.2006.06.016. Epub 2006 Jul 3.
10
Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy.
J Magn Reson. 2006 Sep;182(1):96-105. doi: 10.1016/j.jmr.2006.06.007. Epub 2006 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验