Tucker Warwick, Kutalik Zoltán, Moulton Vincent
Department of Mathematics, Uppsala University, Box 480, Uppsala, Sweden.
Math Biosci. 2007 Aug;208(2):607-20. doi: 10.1016/j.mbs.2006.11.009. Epub 2006 Dec 8.
As modern molecular biology moves towards the analysis of biological systems as opposed to their individual components, the need for appropriate mathematical and computational techniques for understanding the dynamics and structure of such systems is becoming more pressing. For example, the modeling of biochemical systems using ordinary differential equations (ODEs) based on high-throughput, time-dense profiles is becoming more common-place, which is necessitating the development of improved techniques to estimate model parameters from such data. Due to the high dimensionality of this estimation problem, straight-forward optimization strategies rarely produce correct parameter values, and hence current methods tend to utilize genetic/evolutionary algorithms to perform non-linear parameter fitting. Here, we describe a completely deterministic approach, which is based on interval analysis. This allows us to examine entire sets of parameters, and thus to exhaust the global search within a finite number of steps. In particular, we show how our method may be applied to a generic class of ODEs used for modeling biochemical systems called Generalized Mass Action Models (GMAs). In addition, we show that for GMAs our method is amenable to the technique in interval arithmetic called constraint propagation, which allows great improvement of its efficiency. To illustrate the applicability of our method we apply it to some networks of biochemical reactions appearing in the literature, showing in particular that, in addition to estimating system parameters in the absence of noise, our method may also be used to recover the topology of these networks.
随着现代分子生物学从对生物系统的单个组成部分的分析转向对生物系统整体的分析,对于理解此类系统的动力学和结构而言,合适的数学和计算技术的需求变得愈发迫切。例如,基于高通量、时间密集型数据轮廓,使用常微分方程(ODE)对生化系统进行建模变得越来越普遍,这就需要开发改进的技术以从此类数据中估计模型参数。由于这种估计问题的高维度性,直接的优化策略很少能产生正确的参数值,因此当前方法倾向于利用遗传/进化算法来进行非线性参数拟合。在此,我们描述一种基于区间分析的完全确定性方法。这使我们能够检查整个参数集,从而在有限步骤内完成全局搜索。特别地,我们展示了我们的方法如何应用于一类用于生化系统建模的通用ODE,即广义质量作用模型(GMA)。此外,我们表明对于GMA,我们的方法适用于区间算术里称为约束传播的技术,这可极大提高其效率。为说明我们方法的适用性,我们将其应用于文献中出现的一些生化反应网络,特别表明,除了在无噪声情况下估计系统参数外,我们的方法还可用于恢复这些网络的拓扑结构。