Department of Freshwater Ecology, University of Vienna, Vienna, Austria.
PLoS One. 2010 Apr 1;5(4):e9988. doi: 10.1371/journal.pone.0009988.
Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity of resource use are poorly understood.
METHODOLOGY/PRINCIPAL FINDINGS: Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the streambeds with higher flow heterogeneity.
CONCLUSIONS/SIGNIFICANCE: Our results suggest biophysical mechanisms, including hydrodynamics and microbial complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity.
越来越多的证据表明,溪流生态系统对全球碳通量有很大的贡献。这涉及到生物膜(溪流中微生物生命的主要形式)和溶解有机碳(DOC)之间的紧密耦合,DOC 是地球上非常重要的有机碳库。然而,微生物生物多样性与资源利用分子多样性之间的相互作用还知之甚少。
方法/主要发现:我们使用六个 40 米长的溪流边水槽,创建了一个具有不同空间水流异质性的河床景观梯度,以评估溪流固有的物理异质性如何影响生物膜多样性和 DOC 的利用。我们使用 16S-rRNA 指纹图谱确定了所有六个景观中的细菌生物多样性,并通过向所有六个水槽中注入葡萄糖和 DOC 来测量碳的摄取量。通过超高效傅立叶变换离子回旋共振质谱(FTICR-MS)从水中去除的 DOC 分子的多样性。DOC 分子多样性、葡萄糖和 DOC 的摄取以及 DOC 的利用多样性都随着水流异质性的增加而增加。对实验数据的因果建模和路径分析表明,葡萄糖的摄取主要由与水流异质性相关的物理过程驱动,而生物多样性效应,如互补性,很可能有助于增强具有更高水流异质性的河床中具有潜在抗降解性的 DOC 化合物的摄取。
结论/意义:我们的研究结果表明,生物物理机制,包括水动力和微生物互补效应,通过这些机制,物理异质性诱导了溪流中资源利用和碳通量的变化。这些发现强调了溪流中细尺度河床异质性对微生物生物多样性和生态系统功能的重要性,在溪流中,栖息地的同质化和丧失导致生物多样性减少。