Kim Hyun Jung, Boedicker James Q, Choi Jang Wook, Ismagilov Rustem F
Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18188-93. doi: 10.1073/pnas.0807935105. Epub 2008 Nov 14.
This paper shows that for microbial communities, "fences make good neighbors." Communities of soil microorganisms perform critical functions: controlling climate, enhancing crop production, and remediation of environmental contamination. Microbial communities in the oral cavity and the gut are of high biomedical interest. Understanding and harnessing the function of these communities is difficult: artificial microbial communities in the laboratory become unstable because of "winner-takes-all" competition among species. We constructed a community of three different species of wild-type soil bacteria with syntrophic interactions using a microfluidic device to control spatial structure and chemical communication. We found that defined microscale spatial structure is both necessary and sufficient for the stable coexistence of interacting bacterial species in the synthetic community. A mathematical model describes how spatial structure can balance the competition and positive interactions within the community, even when the rates of production and consumption of nutrients by species are mismatched, by exploiting nonlinearities of these processes. These findings provide experimental and modeling evidence for a class of communities that require microscale spatial structure for stability, and these results predict that controlling spatial structure may enable harnessing the function of natural and synthetic multispecies communities in the laboratory.
本文表明,对于微生物群落而言,“隔墙有耳,邻里和睦”。土壤微生物群落发挥着关键作用:控制气候、提高作物产量以及修复环境污染。口腔和肠道中的微生物群落具有很高的生物医学研究价值。理解和利用这些群落的功能颇具难度:实验室中的人工微生物群落会因物种间“赢家通吃”的竞争而变得不稳定。我们使用微流控装置构建了一个由三种具有互营相互作用的野生型土壤细菌组成的群落,以控制空间结构和化学通讯。我们发现,特定的微观空间结构对于合成群落中相互作用的细菌物种稳定共存而言,既是必要条件也是充分条件。一个数学模型描述了空间结构如何通过利用这些过程的非线性,在群落中平衡竞争和积极相互作用,即便物种间营养物质的生产和消耗速率不匹配。这些发现为一类需要微观空间结构来实现稳定的群落提供了实验和建模证据,并且这些结果预测,控制空间结构或许能够在实验室中利用自然和合成多物种群落的功能。