Suppr超能文献

重组 1,4,5-肌醇三磷酸受体 1 型的三维结构。

Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor.

机构信息

Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB21PD, UK.

出版信息

Biochem J. 2010 May 27;428(3):483-9. doi: 10.1042/BJ20100143.

Abstract

IP3Rs (inositol 1,4,5-trisphosphate receptors) are the intracellular channels that mediate release of Ca2+ from the endoplasmic reticulum in response to the many stimuli that evoke Ins(1,4,5)P3 formation. We characterized and purified type 1 IP3R heterologously expressed in Sf9 insect cells, and used the purified IP3R1 to determine its three-dimensional structure by electron microscopy and single-particle analysis. Recombinant IP3R1 has 4-fold symmetry with overall dimensions of approx. 19.5 nm x 19.5 nm x 17.5 nm. It comprises a small domain, which is likely to include the pore, linked by slender bridges to a large cytoplasmic domain with four petal-like regions. Our structures of recombinant IP3R1 and native cerebellar IP3R have similar appearances and dimensions. The only notable difference is the absence of a central stigma-like domain from the cytoplasmic region of recombinant IP3R1. The first structure of a recombinant IP3R is an important step towards developing three-dimensional structures of IP3R that better contribute to our understanding of the structural basis of IP3R activation.

摘要

IP3Rs(肌醇 1,4,5-三磷酸受体)是细胞内通道,可响应引发 Ins(1,4,5)P3 形成的多种刺激,将 Ca2+从内质网中释放出来。我们对 Sf9 昆虫细胞中异源表达的 1 型 IP3R 进行了表征和纯化,并使用纯化的 IP3R1 通过电子显微镜和单颗粒分析来确定其三维结构。重组 IP3R1 具有 4 重对称结构,整体尺寸约为 19.5nm x 19.5nm x 17.5nm。它由一个可能包含孔的小结构域通过细长的桥与具有四个花瓣状区域的大细胞质结构域连接。我们重组的 IP3R1 和天然小脑 IP3R 的结构具有相似的外观和尺寸。唯一值得注意的区别是重组的 IP3R1 细胞质区域中缺少中央柱头样结构域。重组 IP3R 的第一个结构是朝着开发更好地帮助我们理解 IP3R 激活的结构基础的 IP3R 三维结构迈出的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/663d/3685215/c2067a4e8cdb/bic319i001.jpg

相似文献

1
Three-dimensional structure of recombinant type 1 inositol 1,4,5-trisphosphate receptor.
Biochem J. 2010 May 27;428(3):483-9. doi: 10.1042/BJ20100143.
2
Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium.
J Biol Chem. 2003 Dec 26;278(52):52881-9. doi: 10.1074/jbc.M309743200. Epub 2003 Oct 30.
3
Region-specific proteolysis differentially regulates type 1 inositol 1,4,5-trisphosphate receptor activity.
J Biol Chem. 2017 Jul 14;292(28):11714-11726. doi: 10.1074/jbc.M117.789917. Epub 2017 May 19.
4
80K-H interacts with inositol 1,4,5-trisphosphate (IP3) receptors and regulates IP3-induced calcium release activity.
J Biol Chem. 2009 Jan 2;284(1):372-380. doi: 10.1074/jbc.M805828200. Epub 2008 Nov 6.
6
Flexible architecture of IP3R1 by Cryo-EM.
Structure. 2011 Aug 10;19(8):1192-9. doi: 10.1016/j.str.2011.05.003.
7
Functional inositol 1,4,5-trisphosphate receptors assembled from concatenated homo- and heteromeric subunits.
J Biol Chem. 2013 Oct 11;288(41):29772-84. doi: 10.1074/jbc.M113.502203. Epub 2013 Aug 16.
8
Structural Insights into IPR Function.
Adv Exp Med Biol. 2017;981:121-147. doi: 10.1007/978-3-319-55858-5_6.
9
Structural basis for the regulation of inositol trisphosphate receptors by Ca and IP.
Nat Struct Mol Biol. 2018 Aug;25(8):660-668. doi: 10.1038/s41594-018-0089-6. Epub 2018 Jul 16.

引用本文的文献

1
EI24 promotes cell adaption to ER stress by coordinating IRE1 signaling and calcium homeostasis.
EMBO Rep. 2022 Feb 3;23(3):e51679. doi: 10.15252/embr.202051679. Epub 2022 Jan 10.
2
Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions.
Trends Cell Biol. 2018 Jul;28(7):523-540. doi: 10.1016/j.tcb.2018.02.009. Epub 2018 Mar 24.
3
Permeant calcium ion feed-through regulation of single inositol 1,4,5-trisphosphate receptor channel gating.
J Gen Physiol. 2012 Dec;140(6):697-716. doi: 10.1085/jgp.201210804. Epub 2012 Nov 12.
4
Apo and InsP₃-bound crystal structures of the ligand-binding domain of an InsP₃ receptor.
Nat Struct Mol Biol. 2011 Sep 4;18(10):1172-4. doi: 10.1038/nsmb.2112.
5
Differential distribution, clustering, and lateral diffusion of subtypes of the inositol 1,4,5-trisphosphate receptor.
J Biol Chem. 2011 Jul 1;286(26):23378-87. doi: 10.1074/jbc.M111.236372. Epub 2011 May 5.
6
Inositol (1,4,5)-trisphosphate receptor microarchitecture shapes Ca2+ puff kinetics.
Biophys J. 2011 Feb 16;100(4):822-31. doi: 10.1016/j.bpj.2011.01.003.
7
Unitary Ca(2+) current through recombinant type 3 InsP(3) receptor channels under physiological ionic conditions.
J Gen Physiol. 2010 Dec;136(6):687-700. doi: 10.1085/jgp.201010513. Epub 2010 Nov 15.
8
IP(3) receptors: toward understanding their activation.
Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a004010. doi: 10.1101/cshperspect.a004010. Epub 2010 Oct 27.

本文引用的文献

1
Synthetic partial agonists reveal key steps in IP3 receptor activation.
Nat Chem Biol. 2009 Sep;5(9):631-9. doi: 10.1038/nchembio.195. Epub 2009 Aug 9.
2
Dynamic regulation of IP3 receptor clustering and activity by IP3.
Channels (Austin). 2009 Jul-Aug;3(4):226-32. doi: 10.4161/chan.3.4.9247. Epub 2009 Jul 12.
3
Crystal structure of type I ryanodine receptor amino-terminal beta-trefoil domain reveals a disease-associated mutation "hot spot" loop.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11040-4. doi: 10.1073/pnas.0905186106. Epub 2009 Jun 18.
4
Pancreatic protease activation by alcohol metabolite depends on Ca2+ release via acid store IP3 receptors.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10758-63. doi: 10.1073/pnas.0904818106. Epub 2009 Jun 15.
5
A structural model of the pore-forming region of the skeletal muscle ryanodine receptor (RyR1).
PLoS Comput Biol. 2009 Apr;5(4):e1000367. doi: 10.1371/journal.pcbi.1000367. Epub 2009 Apr 24.
6
Ryanodine receptor structure: progress and challenges.
J Biol Chem. 2009 Feb 13;284(7):4047-51. doi: 10.1074/jbc.R800054200. Epub 2008 Oct 16.
7
Molecular characterization of the inositol 1,4,5-trisphosphate receptor pore-forming segment.
J Biol Chem. 2008 Feb 1;283(5):2939-48. doi: 10.1074/jbc.M706645200. Epub 2007 Nov 19.
10
Inositol trisphosphate receptor Ca2+ release channels.
Physiol Rev. 2007 Apr;87(2):593-658. doi: 10.1152/physrev.00035.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验