Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA.
Bioinformatics. 2010 May 15;26(10):1348-56. doi: 10.1093/bioinformatics/btq140. Epub 2010 Apr 7.
The performance of classifiers is often assessed using Receiver Operating Characteristic ROC [or (AC) accumulation curve or enrichment curve] curves and the corresponding areas under the curves (AUCs). However, in many fundamental problems ranging from information retrieval to drug discovery, only the very top of the ranked list of predictions is of any interest and ROCs and AUCs are not very useful. New metrics, visualizations and optimization tools are needed to address this 'early retrieval' problem.
To address the early retrieval problem, we develop the general concentrated ROC (CROC) framework. In this framework, any relevant portion of the ROC (or AC) curve is magnified smoothly by an appropriate continuous transformation of the coordinates with a corresponding magnification factor. Appropriate families of magnification functions confined to the unit square are derived and their properties are analyzed together with the resulting CROC curves. The area under the CROC curve (AUC[CROC]) can be used to assess early retrieval. The general framework is demonstrated on a drug discovery problem and used to discriminate more accurately the early retrieval performance of five different predictors. From this framework, we propose a novel metric and visualization-the CROC(exp), an exponential transform of the ROC curve-as an alternative to other methods. The CROC(exp) provides a principled, flexible and effective way for measuring and visualizing early retrieval performance with excellent statistical power. Corresponding methods for optimizing early retrieval are also described in the Appendix.
Datasets are publicly available. Python code and command-line utilities implementing CROC curves and metrics are available at http://pypi.python.org/pypi/CROC/ CONTACT: pfbaldi@ics.uci.edu
分类器的性能通常使用接收器操作特征 (ROC) [或 (AC) 累积曲线或富集曲线] 曲线及其相应的曲线下面积 (AUC) 进行评估。然而,在从信息检索到药物发现的许多基础问题中,只有预测的排名列表的最顶端才是唯一的,ROC 和 AUC 并不是很有用。需要新的指标、可视化和优化工具来解决这个“早期检索”问题。
为了解决早期检索问题,我们开发了通用集中 ROC (CROC) 框架。在这个框架中,通过对坐标进行适当的连续变换,任何相关的 ROC(或 AC)曲线部分都可以平滑地放大,同时具有相应的放大系数。导出了适当的放大函数族,并对其性质进行了分析,同时分析了相应的 CROC 曲线。CROC 曲线下的面积 (AUC[CROC]) 可用于评估早期检索。该通用框架在药物发现问题上进行了演示,并用于更准确地区分五种不同预测器的早期检索性能。从这个框架中,我们提出了一种新的度量标准和可视化方法——ROC 曲线的指数变换 (CROC(exp)),作为其他方法的替代方法。CROC(exp) 提供了一种用于测量和可视化早期检索性能的灵活、有效的方法,具有出色的统计能力。附录中还描述了用于优化早期检索的相应方法。
数据集是公开可用的。实现 CROC 曲线和指标的 Python 代码和命令行实用程序可在 http://pypi.python.org/pypi/CROC/ 上获得。