Suppr超能文献

比 ROC 更强大的 CROC:测量、可视化和优化早期检索。

A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval.

机构信息

Division of Laboratory and Genomic Medicine, Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA.

出版信息

Bioinformatics. 2010 May 15;26(10):1348-56. doi: 10.1093/bioinformatics/btq140. Epub 2010 Apr 7.

Abstract

MOTIVATION

The performance of classifiers is often assessed using Receiver Operating Characteristic ROC [or (AC) accumulation curve or enrichment curve] curves and the corresponding areas under the curves (AUCs). However, in many fundamental problems ranging from information retrieval to drug discovery, only the very top of the ranked list of predictions is of any interest and ROCs and AUCs are not very useful. New metrics, visualizations and optimization tools are needed to address this 'early retrieval' problem.

RESULTS

To address the early retrieval problem, we develop the general concentrated ROC (CROC) framework. In this framework, any relevant portion of the ROC (or AC) curve is magnified smoothly by an appropriate continuous transformation of the coordinates with a corresponding magnification factor. Appropriate families of magnification functions confined to the unit square are derived and their properties are analyzed together with the resulting CROC curves. The area under the CROC curve (AUC[CROC]) can be used to assess early retrieval. The general framework is demonstrated on a drug discovery problem and used to discriminate more accurately the early retrieval performance of five different predictors. From this framework, we propose a novel metric and visualization-the CROC(exp), an exponential transform of the ROC curve-as an alternative to other methods. The CROC(exp) provides a principled, flexible and effective way for measuring and visualizing early retrieval performance with excellent statistical power. Corresponding methods for optimizing early retrieval are also described in the Appendix.

AVAILABILITY

Datasets are publicly available. Python code and command-line utilities implementing CROC curves and metrics are available at http://pypi.python.org/pypi/CROC/ CONTACT: pfbaldi@ics.uci.edu

摘要

动机

分类器的性能通常使用接收器操作特征 (ROC) [或 (AC) 累积曲线或富集曲线] 曲线及其相应的曲线下面积 (AUC) 进行评估。然而,在从信息检索到药物发现的许多基础问题中,只有预测的排名列表的最顶端才是唯一的,ROC 和 AUC 并不是很有用。需要新的指标、可视化和优化工具来解决这个“早期检索”问题。

结果

为了解决早期检索问题,我们开发了通用集中 ROC (CROC) 框架。在这个框架中,通过对坐标进行适当的连续变换,任何相关的 ROC(或 AC)曲线部分都可以平滑地放大,同时具有相应的放大系数。导出了适当的放大函数族,并对其性质进行了分析,同时分析了相应的 CROC 曲线。CROC 曲线下的面积 (AUC[CROC]) 可用于评估早期检索。该通用框架在药物发现问题上进行了演示,并用于更准确地区分五种不同预测器的早期检索性能。从这个框架中,我们提出了一种新的度量标准和可视化方法——ROC 曲线的指数变换 (CROC(exp)),作为其他方法的替代方法。CROC(exp) 提供了一种用于测量和可视化早期检索性能的灵活、有效的方法,具有出色的统计能力。附录中还描述了用于优化早期检索的相应方法。

可用性

数据集是公开可用的。实现 CROC 曲线和指标的 Python 代码和命令行实用程序可在 http://pypi.python.org/pypi/CROC/ 上获得。

联系

pfbaldi@ics.uci.edu

相似文献

1
A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval.
Bioinformatics. 2010 May 15;26(10):1348-56. doi: 10.1093/bioinformatics/btq140. Epub 2010 Apr 7.
2
ROCS: receiver operating characteristic surface for class-skewed high-throughput data.
PLoS One. 2012;7(7):e40598. doi: 10.1371/journal.pone.0040598. Epub 2012 Jul 6.
3
Estimating the Area Under ROC Curve When the Fitted Binormal Curves Demonstrate Improper Shape.
Acad Radiol. 2017 Feb;24(2):209-219. doi: 10.1016/j.acra.2016.09.020. Epub 2016 Nov 21.
4
Threshold Average Precision (TAP-k): a measure of retrieval designed for bioinformatics.
Bioinformatics. 2010 Jul 15;26(14):1708-13. doi: 10.1093/bioinformatics/btq270. Epub 2010 May 26.
6
pROC: an open-source package for R and S+ to analyze and compare ROC curves.
BMC Bioinformatics. 2011 Mar 17;12:77. doi: 10.1186/1471-2105-12-77.
7
StAR: a simple tool for the statistical comparison of ROC curves.
BMC Bioinformatics. 2008 Jun 5;9:265. doi: 10.1186/1471-2105-9-265.
9
On the use of partial area under the ROC curve for comparison of two diagnostic tests.
Biom J. 2015 Mar;57(2):304-20. doi: 10.1002/bimj.201400023. Epub 2014 Dec 23.

引用本文的文献

1
Area under the ROC Curve has the most consistent evaluation for binary classification.
PLoS One. 2024 Dec 23;19(12):e0316019. doi: 10.1371/journal.pone.0316019. eCollection 2024.
2
Inconsistency among evaluation metrics in link prediction.
PNAS Nexus. 2024 Nov 6;3(11):pgae498. doi: 10.1093/pnasnexus/pgae498. eCollection 2024 Nov.
3
The receiver operating characteristic curve accurately assesses imbalanced datasets.
Patterns (N Y). 2024 May 31;5(6):100994. doi: 10.1016/j.patter.2024.100994. eCollection 2024 Jun 14.
5
"Stealing fire or stacking knowledge" by machine intelligence to model link prediction in complex networks.
iScience. 2022 Nov 30;26(1):105697. doi: 10.1016/j.isci.2022.105697. eCollection 2023 Jan 20.
6
Progresses and challenges in link prediction.
iScience. 2021 Oct 5;24(11):103217. doi: 10.1016/j.isci.2021.103217. eCollection 2021 Nov 19.
7
Limitations of receiver operating characteristic curve on imbalanced data: Assist device mortality risk scores.
J Thorac Cardiovasc Surg. 2023 Apr;165(4):1433-1442.e2. doi: 10.1016/j.jtcvs.2021.07.041. Epub 2021 Jul 30.
8
Modeling the Bioactivation and Subsequent Reactivity of Drugs.
Chem Res Toxicol. 2021 Feb 15;34(2):584-600. doi: 10.1021/acs.chemrestox.0c00417. Epub 2021 Jan 26.
9
Estimating real-world performance of a predictive model: a case-study in predicting mortality.
JAMIA Open. 2020 Apr 26;3(2):243-251. doi: 10.1093/jamiaopen/ooaa008. eCollection 2020 Jul.
10
The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors.
J Chem Inf Model. 2020 Mar 23;60(3):1146-1164. doi: 10.1021/acs.jcim.9b00836. Epub 2020 Feb 24.

本文引用的文献

1
A statistical framework to evaluate virtual screening.
BMC Bioinformatics. 2009 Jul 20;10:225. doi: 10.1186/1471-2105-10-225.
3
Managing bias in ROC curves.
J Comput Aided Mol Des. 2008 Mar-Apr;22(3-4):141-6. doi: 10.1007/s10822-008-9181-z. Epub 2008 Feb 7.
4
One- to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties.
J Chem Inf Model. 2007 May-Jun;47(3):965-74. doi: 10.1021/ci600397p. Epub 2007 Mar 6.
5
Bounds and algorithms for fast exact searches of chemical fingerprints in linear and sublinear time.
J Chem Inf Model. 2007 Mar-Apr;47(2):302-17. doi: 10.1021/ci600358f. Epub 2007 Feb 28.
6
Evaluating virtual screening methods: good and bad metrics for the "early recognition" problem.
J Chem Inf Model. 2007 Mar-Apr;47(2):488-508. doi: 10.1021/ci600426e. Epub 2007 Feb 9.
7
Cheminformatics analysis and learning in a data pipelining environment.
Mol Divers. 2006 Aug;10(3):283-99. doi: 10.1007/s11030-006-9041-5. Epub 2006 Sep 22.
8
The pharmacophore kernel for virtual screening with support vector machines.
J Chem Inf Model. 2006 Sep-Oct;46(5):2003-14. doi: 10.1021/ci060138m.
9
Assessing the discriminatory power of scoring functions for virtual screening.
J Chem Inf Model. 2006 May-Jun;46(3):1456-65. doi: 10.1021/ci060027n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验