Suppr超能文献

代谢彩虹:五种颜色的深度学习一期代谢。

The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors.

机构信息

Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States.

出版信息

J Chem Inf Model. 2020 Mar 23;60(3):1146-1164. doi: 10.1021/acs.jcim.9b00836. Epub 2020 Feb 24.

Abstract

Metabolism of drugs affects their absorption, distribution, efficacy, excretion, and toxicity profiles. Metabolism is routinely assessed experimentally using recombinant enzymes, human liver microsome, and animal models. Unfortunately, these experiments are expensive, time-consuming, and often extrapolate poorly to humans because they fail to capture the full breadth of metabolic reactions observed . As a result, metabolic pathways leading to the formation of toxic metabolites are often missed during drug development, giving rise to costly failures. To address some of these limitations, computational metabolism models can rapidly and cost-effectively predict sites of metabolism-the atoms or bonds which undergo enzymatic modifications-on thousands of drug candidates, thereby improving the likelihood of discovering metabolic transformations forming toxic metabolites. However, current computational metabolism models are often unable to predict the specific metabolites formed by metabolism at certain sites. Identification of reaction type is a key step toward metabolite prediction. Phase I enzymes, which are responsible for the metabolism of more than 90% of FDA approved drugs, catalyze highly diverse types of reactions and produce metabolites with substantial structural variability. Without knowledge of potential metabolite structures, medicinal chemists cannot differentiate harmful metabolic transformations from beneficial ones. To address this shortcoming, we propose a system for simultaneously labeling sites of metabolism and reaction types, by classifying them into five key reaction classes: stable and unstable oxidations, dehydrogenation, hydrolysis, and reduction. These classes unambiguously identify 21 types of phase I reactions, which cover 92.3% of known reactions in our database. We used this labeling system to train a neural network model of phase I metabolism on a literature-derived data set encompassing 20 736 human phase I metabolic reactions. Our model, Rainbow XenoSite, was able to identify reaction-type specific sites of metabolism with a cross-validated accuracy of 97.1% area under the receiver operator curve. Rainbow XenoSite with five-color and combined output is available for use free and online through our secure server at http://swami.wustl.edu/xenosite/p/phase1_rainbow.

摘要

药物代谢会影响其吸收、分布、疗效、排泄和毒性特征。通常使用重组酶、人肝微粒体和动物模型来实验性地评估代谢。不幸的是,这些实验既昂贵又耗时,并且常常不能很好地外推到人类,因为它们未能捕捉到观察到的代谢反应的全部范围。结果,导致形成有毒代谢物的代谢途径在药物开发过程中经常被忽略,导致代价高昂的失败。为了解决其中的一些限制,计算代谢模型可以快速有效地预测数千种药物候选物的代谢部位-发生酶修饰的原子或键-从而提高发现形成有毒代谢物的代谢转化的可能性。然而,目前的计算代谢模型通常无法预测特定部位代谢形成的具体代谢物。确定反应类型是代谢产物预测的关键步骤。负责代谢超过 90%的 FDA 批准药物的 I 相酶催化高度多样化的反应,并产生具有大量结构变异性的代谢物。如果不知道潜在的代谢物结构,药物化学家就无法将有害的代谢转化与有益的代谢转化区分开来。为了解决这个缺点,我们提出了一种系统,可以通过将它们分类为五个关键反应类别,同时对代谢部位和反应类型进行标记:稳定和不稳定的氧化、脱氢、水解和还原。这些类别明确地确定了 21 种 I 相反应类型,涵盖了我们数据库中已知反应的 92.3%。我们使用这个标记系统在一个由文献衍生的数据集中对 I 相代谢的神经网络模型进行了训练,该数据集包含 20736 个人类 I 相代谢反应。我们的模型 Rainbow XenoSite 在交叉验证中对反应类型特异性代谢部位的识别准确率为 97.1%,接收器操作曲线下的面积。Rainbow XenoSite 带有五色和组合输出,可通过我们安全服务器上的 http://swami.wustl.edu/xenosite/p/phase1_rainbow 免费在线使用。

相似文献

1
The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors.代谢彩虹:五种颜色的深度学习一期代谢。
J Chem Inf Model. 2020 Mar 23;60(3):1146-1164. doi: 10.1021/acs.jcim.9b00836. Epub 2020 Feb 24.
2
XenoSite server: a web-available site of metabolism prediction tool.XenoSite 服务器:一个可用的代谢预测工具网站。
Bioinformatics. 2015 Apr 1;31(7):1136-7. doi: 10.1093/bioinformatics/btu761. Epub 2014 Nov 18.
4
XenoNet: Inference and Likelihood of Intermediate Metabolite Formation.异种网络:中间代谢物形成的推断与可能性
J Chem Inf Model. 2020 Jul 27;60(7):3431-3449. doi: 10.1021/acs.jcim.0c00361. Epub 2020 Jun 29.
5
Message Passing Neural Networks Improve Prediction of Metabolite Authenticity.消息传递神经网络提高代谢物真实性预测。
J Chem Inf Model. 2023 Mar 27;63(6):1675-1694. doi: 10.1021/acs.jcim.2c01383. Epub 2023 Mar 16.
6
Modeling the Bioactivation and Subsequent Reactivity of Drugs.药物的生物活化及后续反应的建模。
Chem Res Toxicol. 2021 Feb 15;34(2):584-600. doi: 10.1021/acs.chemrestox.0c00417. Epub 2021 Jan 26.
7
Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.深度学习预测药物代谢中醌类物质的形成
Chem Res Toxicol. 2017 Feb 20;30(2):642-656. doi: 10.1021/acs.chemrestox.6b00385. Epub 2017 Feb 2.
8
Computationally Assessing the Bioactivation of Drugs by N-Dealkylation.通过 N-去烷基化作用计算评估药物的生物活化作用。
Chem Res Toxicol. 2018 Feb 19;31(2):68-80. doi: 10.1021/acs.chemrestox.7b00191. Epub 2018 Feb 6.

引用本文的文献

6
Automated Annotation of Sites of Metabolism from Biotransformation Data.基于生物转化数据的代谢位点自动注释
J Chem Inf Model. 2025 Jul 14;65(13):7065-7080. doi: 10.1021/acs.jcim.5c00819. Epub 2025 Jun 17.

本文引用的文献

1
Computationally Assessing the Bioactivation of Drugs by N-Dealkylation.通过 N-去烷基化作用计算评估药物的生物活化作用。
Chem Res Toxicol. 2018 Feb 19;31(2):68-80. doi: 10.1021/acs.chemrestox.7b00191. Epub 2018 Feb 6.
5
Deep Learning to Predict the Formation of Quinone Species in Drug Metabolism.深度学习预测药物代谢中醌类物质的形成
Chem Res Toxicol. 2017 Feb 20;30(2):642-656. doi: 10.1021/acs.chemrestox.6b00385. Epub 2017 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验