Department of Electronics and Information Engineering, Anhui University of Technology, Ma'anshan, 243002, China.
BMC Bioinformatics. 2010 Apr 11;11:182. doi: 10.1186/1471-2105-11-182.
There is an increasing usage of ion mobility-mass spectrometry (IMMS) in proteomics. IMMS combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS). It separates and detects peptide ions on a millisecond time-scale. IMS separates peptide ions based on drift time that is determined by the collision cross-section of each peptide ion in a given experiment condition. A peptide ion's collision cross-section is related to the ion size and shape resulted from the peptide amino acid sequence and their modifications. This inherent relation between the drift time of peptide ion and peptide sequence indicates that the drift time of peptide ions can be used to infer peptide sequence and therefore, for peptide identification.
This paper describes an artificial neural networks (ANNs) regression model for the prediction of peptide ion drift time in IMMS. Each peptide in this work was represented using three descriptors (i.e., molecular weight, sequence length and a two-dimensional sequence index). An ANN predictor consisting of four input nodes, three hidden nodes and one output node was constructed for peptide ion drift time prediction. For the model training and testing, a 10-fold cross-validation strategy was employed for three datasets each containing different charge states. Dataset one contains 212 singly-charged peptide ions, dataset two has 306 doubly-charged peptide ions, and dataset three has 77 triply-charged peptide ions. Our proposed method achieved 94.4%, 93.6% and 74.2% prediction accuracy for singly-, doubly- and triply-charged peptide ions, respectively.
An ANN-based method has been developed for predicting the drift time of peptide ions in IMMS. The results achieved here demonstrate the effectiveness and efficiency of the prediction model. This work can enhance the confidence of protein identification by combining with current database search approaches for protein identification.
离子淌度-质谱联用(IMMS)在蛋白质组学中的应用日益增多。IMMS 结合了离子淌度谱(IMS)和质谱(MS)的特点。它可以在毫秒级的时间尺度上分离和检测肽离子。IMS 根据每个肽离子在给定实验条件下的碰撞截面来确定的漂移时间来分离肽离子。肽离子的碰撞截面与肽氨基酸序列及其修饰所产生的离子大小和形状有关。肽离子的漂移时间与肽序列之间的这种内在关系表明,肽离子的漂移时间可用于推断肽序列,从而进行肽鉴定。
本文描述了一种用于预测 IMMS 中肽离子漂移时间的人工神经网络(ANNs)回归模型。这项工作中的每个肽都使用三个描述符(即分子量、序列长度和二维序列指数)表示。构建了一个由四个输入节点、三个隐藏节点和一个输出节点组成的 ANN 预测器,用于肽离子漂移时间预测。对于模型训练和测试,采用 10 折交叉验证策略,对三个数据集(每个数据集包含不同的电荷状态)进行处理。数据集一包含 212 个单电荷肽离子,数据集二有 306 个双电荷肽离子,数据集三有 77 个三电荷肽离子。我们提出的方法分别对单电荷、双电荷和三电荷肽离子的预测准确率达到了 94.4%、93.6%和 74.2%。
本文开发了一种基于人工神经网络的方法,用于预测 IMMS 中肽离子的漂移时间。这里的结果证明了预测模型的有效性和效率。这项工作可以通过与当前的数据库搜索方法相结合,提高蛋白质鉴定的置信度。