Section of Emergency Medicine, Department of Medicine, Emergency Resuscitation Center, University of Chicago, Chicago, IL, USA.
Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H2164-73. doi: 10.1152/ajpheart.00994.2009. Epub 2010 Apr 9.
Therapeutic hypothermia (TH) is a promising cardioprotective treatment for cardiac arrest and acute myocardial infarction, but its cytoprotective mechanisms remain unknown. In this study, we developed a murine cardiomyocyte model of ischemia-reperfusion injury to better determine the mechanisms of TH cardioprotection. We hypothesized that TH manipulates Akt, a survival kinase that mediates mitochondrial protection by modulating reactive oxygen species (ROS) and nitric oxide (NO) generation. Cardiomyocytes, isolated from 1- to 2-day-old C57BL6/J mice, were exposed to 90 min simulated ischemia and 3 h reperfusion. For TH, cells were cooled to 32 degrees C during the last 20 min of ischemia and the first hour of reperfusion. Cell viability was evaluated by propidium iodide and lactate dehydrogenase release. ROS production was measured by 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate and mitochondrial membrane potential (DeltaPsim) by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazoly-carbocyanine iodide (JC-1). Phospho (p)-Akt (Thr308), p-Akt (Ser473), and phosphorylated heat shock protein 27 (p-HSP27) (Ser82) were analyzed by Western blot analysis. TH attenuated reperfusion ROS generation, increased NO, maintained DeltaPsim, and decreased cell death [19.3 + or - 3.3% (n = 11) vs. 44.7 + or - 2.7% (n = 10), P < 0.001]. TH also increased p-Akt during ischemia before reperfusion. TH protection and attenuation of ROS were blocked by the inhibition of Akt and NO synthase but not by a cGMP inhibitor. HSP27, a regulator of Akt, also exhibited increased phosphorylation (Ser82) during ischemia with TH. We conclude that TH cardioprotection is mediated by enhanced Akt/HSP27 phosphorylation and enhanced NO generation, resulting in the attenuation of ROS generation and the maintenance of DeltaPsim following ischemia-reperfusion.
治疗性低温(TH)是一种有前途的心脏骤停和急性心肌梗死的心脏保护治疗方法,但它的细胞保护机制尚不清楚。在这项研究中,我们建立了一种缺血再灌注损伤的鼠心肌细胞模型,以更好地确定 TH 心脏保护的机制。我们假设 TH 调节 Akt,一种生存激酶,通过调节活性氧(ROS)和一氧化氮(NO)的产生来介导线粒体保护。从 1 至 2 天龄的 C57BL6/J 小鼠中分离出心肌细胞,使其经历 90 分钟模拟缺血和 3 小时再灌注。对于 TH,在缺血的最后 20 分钟和再灌注的第一个小时将细胞冷却至 32°C。通过碘化丙啶和乳酸脱氢酶释放评估细胞活力。通过 6-羧基-2',7'-二氯二氢荧光素二乙酸酯测量 ROS 产生,通过 5,5',6,6'-四氯-1,1',3,3'-四乙基苯并咪唑基-碳化二亚胺碘化物(JC-1)测量线粒体膜电位(ΔPsi m)。通过 Western blot 分析分析磷酸化(p)-Akt(Thr308),p-Akt(Ser473)和磷酸化热休克蛋白 27(p-HSP27)(Ser82)。TH 减弱了再灌注期间的 ROS 生成,增加了 NO,维持了 ΔPsi m,并减少了细胞死亡[19.3±3.3%(n=11)比 44.7±2.7%(n=10),P<0.001]。TH 还在再灌注前的缺血期间增加了 Akt 的磷酸化。TH 的保护作用和 ROS 的减弱被 Akt 和一氧化氮合酶的抑制所阻断,但不受 cGMP 抑制剂的影响。Akt 的调节剂 HSP27 在缺血期间也表现出磷酸化(Ser82)增加,而有 TH 时则增加。我们的结论是,TH 心脏保护是通过增强 Akt/HSP27 磷酸化和增强 NO 生成介导的,从而在缺血再灌注后减少 ROS 生成并维持ΔPsi m。