School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia.
J Appl Physiol (1985). 2012 Nov;113(9):1403-12. doi: 10.1152/japplphysiol.00788.2012. Epub 2012 Aug 30.
Inactivity-related diseases are becoming a huge burden on Western society. While there is a major environmental contribution to metabolic health, the intrinsic properties that predispose or protect against particular health traits are harder to define. We used rat models of inborn high running capacity (HCR) and low running capacity (LCR) to determine inherent differences in mitochondrial volume and function, hypothesizing that HCR rats would have greater skeletal muscle respiratory capacity due to an increase in mitochondrial number. Additionally, we sought to determine if there was a link between the expression of the orphan nuclear receptor neuron-derived orphan receptor (Nor)1, a regulator of oxidative metabolism, and inherent skeletal muscle respiratory capacity. LCR rats were 28% heavier (P < 0.0001), and fasting serum insulin concentrations were 62% greater than in HCR rats (P = 0.02). In contrast, HCR rats had better glucose tolerance and reduced adiposity. In the primarily oxidative soleus muscle, maximal respiratory capacity was 21% greater in HCR rats (P = 0.001), for which the relative contribution of fat oxidation was 20% higher than in LCR rats (P = 0.02). This was associated with increased citrate synthase (CS; 33%, P = 0.009) and β-hydroxyacyl-CoA (β-HAD; 33%, P = 0.0003) activities. In the primarily glycolytic extensor digitum longus muscle, CS activity was 29% greater (P = 0.01) and β-HAD activity was 41% (P = 0.0004) greater in HCR rats compared with LCR rats. Mitochondrial DNA copy numbers were also elevated in the extensor digitum longus muscles of HCR rats (35%, P = 0.049) and in soleus muscles (44%, P = 0.16). Additionally, HCR rats had increased protein expression of individual mitochondrial respiratory complexes, CS, and uncoupling protein 3 in both muscle types (all P < 0.05). In both muscles, Nor1 protein was greater in HCR rats compared with LCR rats (P < 0.05). We propose that the differential expression of Nor1 may contribute to the differences in metabolic regulation between LCR and HCR phenotypes.
与不活动相关的疾病正在成为西方社会的一个巨大负担。虽然代谢健康受到重大环境因素的影响,但导致特定健康特征的内在特性更难定义。我们使用天生高跑步能力 (HCR) 和低跑步能力 (LCR) 的大鼠模型来确定线粒体体积和功能的内在差异,假设 HCR 大鼠由于线粒体数量的增加而具有更大的骨骼肌呼吸能力。此外,我们还试图确定孤儿核受体神经元衍生孤儿受体 (Nor)1 的表达与内在骨骼肌呼吸能力之间是否存在联系,Nor1 是氧化代谢的调节剂。LCR 大鼠比 HCR 大鼠重 28%(P < 0.0001),空腹血清胰岛素浓度高 62%(P = 0.02)。相比之下,HCR 大鼠具有更好的葡萄糖耐量和减少的肥胖。在主要氧化的比目鱼肌中,HCR 大鼠的最大呼吸能力高 21%(P = 0.001),其脂肪氧化的相对贡献比 LCR 大鼠高 20%(P = 0.02)。这与柠檬酸合酶 (CS; 33%,P = 0.009) 和β-羟酰基辅酶 A (β-HAD; 33%,P = 0.0003) 活性的增加有关。在主要糖酵解的伸趾长肌中,与 LCR 大鼠相比,HCR 大鼠的 CS 活性高 29%(P = 0.01),β-HAD 活性高 41%(P = 0.0004)。与 LCR 大鼠相比,HCR 大鼠的伸趾长肌和比目鱼肌的线粒体 DNA 拷贝数也升高(伸趾长肌 35%,P = 0.049;比目鱼肌 44%,P = 0.16)。此外,在两种肌肉类型中,HCR 大鼠的单个线粒体呼吸复合物、CS 和解偶联蛋白 3 的蛋白表达均增加(均 P < 0.05)。在两种肌肉中,HCR 大鼠的 Nor1 蛋白表达均高于 LCR 大鼠(P < 0.05)。我们提出,Nor1 的差异表达可能有助于解释 LCR 和 HCR 表型之间代谢调节的差异。