School of Materials Science and Engineering, The University of New South Wales, NSW 2052 Australia.
Phys Chem Chem Phys. 2010 Jun 21;12(23):6008-13. doi: 10.1039/b926427b. Epub 2010 Apr 9.
The green emission in ZnO can be identified as two characteristic emissions, namely high and low energy emissions, respectively. The study of band bending effect of ZnO surface demonstrates that oxygen vacancies cause both the core level and the valence band to shift to higher binding energy. The downward band bending induced by a strong accumulation layer, where the oxygen vacancies act as donors, results in the high energy green emission. ZnO with the low energy green emission has Zn 2p 3/2 core level binding energy shifted to lower binding energy. The depth of dominant oxygen vacancies plays an important role in determining the mechanisms of green emission.
氧化锌中的绿光发射可以被识别为两个特征发射,分别是高能和低能发射。对氧化锌表面能带弯曲效应的研究表明,氧空位导致芯能级和价带都向更高的结合能移动。一个强的积累层导致的向下能带弯曲,其中氧空位作为施主,导致高能绿光发射。具有低能量绿光发射的氧化锌的 Zn 2p 3/2 芯能级结合能向更低的结合能移动。主导氧空位的深度在决定绿光发射机制方面起着重要作用。