Suppr超能文献

伪逆变形向量场生成器及其应用。

A pseudoinverse deformation vector field generator and its applications.

机构信息

Department of Radiation Oncology, Virginia Commonwealth University, P.O. Box 980058, Richmond, Virginia 23298, USA.

出版信息

Med Phys. 2010 Mar;37(3):1117-28. doi: 10.1118/1.3301594.

Abstract

PURPOSE

To present, implement, and test a self-consistent pseudoinverse displacement vector field (PIDVF) generator, which preserves the location of information mapped back-and-forth between image sets.

METHODS

The algorithm is an iterative scheme based on nearest neighbor interpolation and a subsequent iterative search. Performance of the algorithm is benchmarked using a lung 4DCT data set with six CT images from different breathing phases and eight CT images for a single prostrate patient acquired on different days. A diffeomorphic deformable image registration is used to validate our PIDVFs. Additionally, the PIDVF is used to measure the self-consistency of two nondiffeomorphic algorithms which do not use a self-consistency constraint: The ITK Demons algorithm for the lung patient images and an in-house B-Spline algorithm for the prostate patient images. Both Demons and B-Spline have been QAed through contour comparison. Self-consistency is determined by using a DIR to generate a displacement vector field (DVF) between reference image R and study image S (DVF(R-S)). The same DIR is used to generate DVF(S-R). Additionally, our PIDVF generator is used to create PIDVF(S-R). Back-and-forth mapping of a set of points (used as surrogates of contours) using DVF(R-S) and DVF(S-R) is compared to back-and-forth mapping performed with DVF(R-S) and PIDVF(S-R). The Euclidean distances between the original unmapped points and the mapped points are used as a self-consistency measure.

RESULTS

Test results demonstrate that the consistency error observed in back-and-forth mappings can be reduced two to nine times in point mapping and 1.5 to three times in dose mapping when the PIDVF is used in place of the B-Spline algorithm. These self-consistency improvements are not affected by the exchanging of R and S. It is also demonstrated that differences between DVF(S-R) and PIDVF(S-R) can be used as a criteria to check the quality of the DVF.

CONCLUSIONS

Use of DVF and its PIDVF will improve the self-consistency of points, contour, and dose mappings in image guided adaptive therapy.

摘要

目的

提出、实现和测试一个自一致的伪逆位移矢量场 (PIDVF) 生成器,该生成器保留了在图像集之间来回映射的信息的位置。

方法

该算法是一种基于最近邻插值和随后的迭代搜索的迭代方案。使用具有六个来自不同呼吸阶段的 CT 图像的肺部 4DCT 数据集以及单个前列腺患者的八个来自不同日期的 CT 图像来对算法的性能进行基准测试。使用变形图像配准来验证我们的 PIDVFs。此外,还使用 PIDVF 来测量两个不使用自一致性约束的非变形算法的自一致性:用于肺部患者图像的 ITK Demons 算法和用于前列腺患者图像的内部 B-Spline 算法。Demons 和 B-Spline 都已经通过轮廓比较进行了 QA。通过使用 DIR 在参考图像 R 和研究图像 S 之间生成位移矢量场 (DVF)(DVF(R-S))来确定自一致性。使用相同的 DIR 在 S-R 之间生成 DVF。此外,我们的 PIDVF 生成器用于创建 PIDVF(S-R)。使用 DVF(R-S) 和 DVF(S-R) 对一组点(用作轮廓的替代物)进行来回映射,并将其与使用 DVF(R-S) 和 PIDVF(S-R) 进行的来回映射进行比较。原始未映射点和映射点之间的欧几里得距离用作自一致性度量。

结果

测试结果表明,当在 B-Spline 算法中使用 PIDVF 时,点映射的来回映射中的一致性误差可以减少两到九倍,剂量映射中的一致性误差可以减少 1.5 到三倍。这些自一致性改进不受 R 和 S 的交换的影响。还表明,DVF(S-R) 和 PIDVF(S-R) 之间的差异可以用作检查 DVF 质量的标准。

结论

在图像引导自适应治疗中,使用 DVF 和其 PIDVF 将提高点、轮廓和剂量映射的自一致性。

相似文献

1
A pseudoinverse deformation vector field generator and its applications.
Med Phys. 2010 Mar;37(3):1117-28. doi: 10.1118/1.3301594.
2
A framework for deformable image registration validation in radiotherapy clinical applications.
J Appl Clin Med Phys. 2013 Jan 2;14(1):4066. doi: 10.1120/jacmp.v14i1.4066.
4
A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images.
Phys Med Biol. 2015 Apr 7;60(7):2981-3002. doi: 10.1088/0031-9155/60/7/2981. Epub 2015 Mar 19.
5
Analysis of deformable image registration accuracy using computational modeling.
Med Phys. 2010 Mar;37(3):970-9. doi: 10.1118/1.3302141.
7
Validation of three deformable image registration algorithms for the thorax.
J Appl Clin Med Phys. 2013 Jan 7;14(1):3834. doi: 10.1120/jacmp.v14i1.3834.
9
The utilization of consistency metrics for error analysis in deformable image registration.
Phys Med Biol. 2009 Sep 21;54(18):5561-77. doi: 10.1088/0031-9155/54/18/014. Epub 2009 Aug 28.
10
A contour-guided deformable image registration algorithm for adaptive radiotherapy.
Phys Med Biol. 2013 Mar 21;58(6):1889-901. doi: 10.1088/0031-9155/58/6/1889. Epub 2013 Feb 27.

引用本文的文献

2
Training deep-learning segmentation models from severely limited data.
Med Phys. 2021 Apr;48(4):1697-1706. doi: 10.1002/mp.14728. Epub 2021 Feb 19.
3
Iterative inversion of deformation vector fields with feedback control.
Med Phys. 2018 Jul;45(7):3147-3160. doi: 10.1002/mp.12962. Epub 2018 Jun 10.
5
Direct dose mapping versus energy/mass transfer mapping for 4D dose accumulation: fundamental differences and dosimetric consequences.
Phys Med Biol. 2014 Jan 6;59(1):173-88. doi: 10.1088/0031-9155/59/1/173. Epub 2013 Dec 13.
8
Monte Carlo dose mapping on deforming anatomy.
Phys Med Biol. 2009 Oct 7;54(19):5815-30. doi: 10.1088/0031-9155/54/19/010. Epub 2009 Sep 9.

本文引用的文献

1
A fast inverse consistent deformable image registration method based on symmetric optical flow computation.
Phys Med Biol. 2008 Nov 7;53(21):6143-65. doi: 10.1088/0031-9155/53/21/017. Epub 2008 Oct 14.
2
An energy transfer method for 4D Monte Carlo dose calculation.
Med Phys. 2008 Sep;35(9):4096-105. doi: 10.1118/1.2968215.
4
A simple fixed-point approach to invert a deformation field.
Med Phys. 2008 Jan;35(1):81-8. doi: 10.1118/1.2816107.
5
Assessment of dose reconstruction errors in image-guided radiation therapy.
Phys Med Biol. 2008 Feb 7;53(3):719-36. doi: 10.1088/0031-9155/53/3/013. Epub 2008 Jan 11.
6
On-line re-optimization of prostate IMRT plans for adaptive radiation therapy.
Phys Med Biol. 2008 Feb 7;53(3):673-91. doi: 10.1088/0031-9155/53/3/011. Epub 2008 Jan 10.
7
Hybrid multiscale landmark and deformable image registration.
Math Biosci Eng. 2007 Oct;4(4):711-37. doi: 10.3934/mbe.2007.4.711.
8
Comparative evaluation of similarity measures for the rigid registration of multi-modal head images.
Phys Med Biol. 2007 Sep 21;52(18):5587-601. doi: 10.1088/0031-9155/52/18/008. Epub 2007 Sep 3.
9
FEM-based evaluation of deformable image registration for radiation therapy.
Phys Med Biol. 2007 Aug 21;52(16):4721-38. doi: 10.1088/0031-9155/52/16/001. Epub 2007 Jul 24.
10
Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning.
Int J Radiat Oncol Biol Phys. 2006 Dec 1;66(5):1553-61. doi: 10.1016/j.ijrobp.2006.08.031. Epub 2006 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验