Suppr超能文献

基于形变图像配准的剂量映射中三维内在剂量不确定性的评估。

Estimation of three-dimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping.

机构信息

Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia, 23298, USA.

出版信息

Med Phys. 2011 Jan;38(1):343-53. doi: 10.1118/1.3528201.

Abstract

PURPOSE

This article presents a general procedural framework to assess the point-by-point precision in mapped dose associated with the intrinsic uncertainty of a deformable image registration (DIR) for any arbitrary patient.

METHODS

Dose uncertainty is obtained via a three-step process. In the first step, for each voxel in an imaging pair, a cluster of points is obtained by an iterative DIR procedure. In the second step, the dispersion of the points due to the imprecision of the DIR method is used to compute the spatial uncertainty. Two different ways to quantify the spatial uncertainty are presented in this work. Method A consists of a one-dimensional analysis of the modules of the position vectors, whereas method B performs a more detailed 3D analysis of the coordinates of the points. In the third step, the resulting spatial uncertainty estimates are used in combination with the mapped dose distribution to compute the point-by-point dose standard deviation. The process is demonstrated to estimate the dose uncertainty induced by mapping a 62.6 Gy dose delivered on maximum exhale to maximum inhale of a ten-phase four-dimensional lung CT.

RESULTS

For the demonstration lung image pair, the standard deviation of inconsistency vectors is found to be up to 9.2 mm with a mean sigma of 1.3 mm. This uncertainty results in a maximum estimated dose uncertainty of 29.65 Gy if method A is used and 21.81 Gy for method B. The calculated volume with dose uncertainty above 10.00 Gy is 602 cm3 for method A and 1422 cm3 for method B.

CONCLUSIONS

This procedure represents a useful tool to evaluate the precision of a mapped dose distribution due to the intrinsic DIR uncertainty in a patient. The procedure is flexible, allowing incorporation of alternative intrinsic error models.

摘要

目的

本文提出了一种通用的程序框架,用于评估与任意患者的变形图像配准(DIR)固有不确定性相关的映射剂量的逐点精度。

方法

通过三步过程获得剂量不确定性。在第一步中,对于成像对中的每个体素,通过迭代 DIR 过程获得一组点。在第二步中,使用 DIR 方法的不精确性来计算空间不确定性的点的离散度。在这项工作中提出了两种量化空间不确定性的方法。方法 A 由位置向量的模块的一维分析组成,而方法 B 对点的坐标进行更详细的 3D 分析。在第三步中,将得到的空间不确定性估计与映射剂量分布结合使用,以计算逐点剂量标准偏差。该过程用于估计将 62.6Gy 剂量映射到十相四维肺 CT 的最大呼气和最大吸气时引起的剂量不确定性。

结果

对于演示用的肺图像对,发现不一致向量的标准偏差高达 9.2mm,平均 sigma 为 1.3mm。如果使用方法 A,则这种不确定性会导致最大估计剂量不确定性为 29.65Gy,如果使用方法 B,则最大估计剂量不确定性为 21.81Gy。如果使用方法 A,则计算出的剂量不确定性超过 10.00Gy 的体积为 602cm3,如果使用方法 B,则计算出的剂量不确定性超过 10.00Gy 的体积为 1422cm3。

结论

该程序代表了一种有用的工具,可用于评估由于患者内在 DIR 不确定性导致的映射剂量分布的精度。该程序具有灵活性,允许纳入替代的内在误差模型。

相似文献

3
Robust CT ventilation from the integral formulation of the Jacobian.
Med Phys. 2019 May;46(5):2115-2125. doi: 10.1002/mp.13453. Epub 2019 Mar 22.
4
Robust HU-based CT ventilation from an integrated mass conservation formulation.
Med Phys. 2019 Nov;46(11):5036-5046. doi: 10.1002/mp.13817. Epub 2019 Sep 28.
6
Representing the dosimetric impact of deformable image registration errors.
Phys Med Biol. 2017 Aug 11;62(17):N391-N403. doi: 10.1088/1361-6560/aa8133.
7
Effect of deformable registration uncertainty on lung SBRT dose accumulation.
Med Phys. 2016 Jan;43(1):233. doi: 10.1118/1.4938412.
10
The VAMPIRE challenge: A multi-institutional validation study of CT ventilation imaging.
Med Phys. 2019 Mar;46(3):1198-1217. doi: 10.1002/mp.13346. Epub 2019 Feb 1.

引用本文的文献

1
Pelvic dose accumulation accuracy in a CBCT based online adaptive radiotherapy system.
J Appl Clin Med Phys. 2025 Jul;26(7):e70160. doi: 10.1002/acm2.70160.
2
Deformable Image Registration Uncertainty-Encompassing Dose Accumulation for Adaptive Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2025 Jul 15;122(4):818-826. doi: 10.1016/j.ijrobp.2025.04.004. Epub 2025 Apr 14.
3
Tools and recommendations for commissioning and quality assurance of deformable image registration in radiotherapy.
Phys Imaging Radiat Oncol. 2024 Sep 14;32:100647. doi: 10.1016/j.phro.2024.100647. eCollection 2024 Oct.
4
Review and recommendations on deformable image registration uncertainties for radiotherapy applications.
Phys Med Biol. 2023 Dec 13;68(24):24TR01. doi: 10.1088/1361-6560/ad0d8a.
5
Applicability and usage of dose mapping/accumulation in radiotherapy.
Radiother Oncol. 2023 May;182:109527. doi: 10.1016/j.radonc.2023.109527. Epub 2023 Feb 10.
6
MIRSIG position paper: the use of image registration and fusion algorithms in radiotherapy.
Phys Eng Sci Med. 2022 Jun;45(2):421-428. doi: 10.1007/s13246-022-01125-3. Epub 2022 May 6.
8
Validation of a dose warping algorithm using clinically realistic scenarios.
Br J Radiol. 2015 May;88(1049):20140691. doi: 10.1259/bjr.20140691. Epub 2015 Mar 20.

本文引用的文献

2
A pseudoinverse deformation vector field generator and its applications.
Med Phys. 2010 Mar;37(3):1117-28. doi: 10.1118/1.3301594.
3
Implementation and evaluation of various demons deformable image registration algorithms on a GPU.
Phys Med Biol. 2010 Jan 7;55(1):207-19. doi: 10.1088/0031-9155/55/1/012.
4
Results of a multi-institution deformable registration accuracy study (MIDRAS).
Int J Radiat Oncol Biol Phys. 2010 Feb 1;76(2):583-96. doi: 10.1016/j.ijrobp.2009.06.031. Epub 2009 Nov 10.
5
The utilization of consistency metrics for error analysis in deformable image registration.
Phys Med Biol. 2009 Sep 21;54(18):5561-77. doi: 10.1088/0031-9155/54/18/014. Epub 2009 Aug 28.
6
Inverse-consistent surface mapping with Laplace-Beltrami eigen-features.
Inf Process Med Imaging. 2009;21:467-78. doi: 10.1007/978-3-642-02498-6_39.
7
Symmetric inverse consistent nonlinear registration driven by mutual information.
Comput Methods Programs Biomed. 2009 Aug;95(2):105-15. doi: 10.1016/j.cmpb.2009.01.011. Epub 2009 Mar 5.
8
A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets.
Phys Med Biol. 2009 Apr 7;54(7):1849-70. doi: 10.1088/0031-9155/54/7/001. Epub 2009 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验