Suppr超能文献

基于 Contourlet 的 PET 图像分割主动轮廓模型。

Contourlet-based active contour model for PET image segmentation.

机构信息

Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen 9700 RB, The Netherlands.

出版信息

Med Phys. 2013 Aug;40(8):082507. doi: 10.1118/1.4816296.

Abstract

PURPOSE

PET-guided radiation therapy treatment planning, clinical diagnosis, assessment of tumor growth, and therapy response rely on the accurate delineation of the tumor volume and quantification of tracer uptake. Most PET image segmentation techniques proposed thus far are suboptimal in the presence of heterogeneity of tracer uptake within the lesion. This work presents an active contour model approach based on the method of Chan and Vese ["Active contours without edges," IEEE Trans. Image Process. 10, 266-277 (2001)] designed to take into account the high level of statistical uncertainty (noise) and to handle the heterogeneity of tumor uptake typically present in PET images.

METHODS

In the proposed method, the fitting terms in the Chan-Vese formulation are modified by introducing new input images, including the smoothed version of the original image using anisotropic diffusion filtering (ADF) and the contourlet transform of the image. The advantage of utilizing ADF for image smoothing is that it avoids blurring the object's edges and preserves the average activity within a region, which is important for accurate PET quantification. Moreover, incorporating the contourlet transform of the image into the fitting terms makes the energy functional more effective in directing the evolving curve toward the object boundaries due to the enhancement of the tumor-to-background ratio (TBR). The proper choice of the energy functional parameters has been formulated by making a clear consensus based on tumor heterogeneity and TBR levels. This cautious parameter selection leads to proper handling of heterogeneous lesions. The algorithm was evaluated using simulated phantom and clinical studies, where the ground truth and histology, respectively, were available for accurate quantitative analysis of the segmentation results. The proposed technique was also compared to a number of previously reported image segmentation techniques.

RESULTS

The results were quantitatively analyzed using three evaluation metrics, including the spatial overlap index (SOI), the mean relative error (MRE), and the mean classification error (MCE). Although the performance of the proposed method was analogous to other methods for some datasets, overall the proposed algorithm outperforms all other techniques. In the largest clinical group comprising nine datasets, the proposed approach improved the SOI from 0.41±0.14 obtained using the best-performing algorithm to 0.54±0.12 and reduced the MRE from 54.23±103.29 to 0.19±16.63 and the MCE from 112.86±69.07 to 60.58±18.43.

CONCLUSIONS

The proposed segmentation technique is superior to other representative segmentation techniques in terms of highest overlap between the segmented volume and the ground truth∕histology and minimum relative and classification errors. Therefore, the proposed active contour model can result in more accurate tumor volume delineation from PET images.

摘要

目的

正电子发射断层扫描(PET)引导的放射治疗计划、临床诊断、肿瘤生长评估和治疗反应依赖于肿瘤体积的准确勾画和示踪剂摄取的定量。迄今为止提出的大多数 PET 图像分割技术在病变内示踪剂摄取的异质性存在时效果并不理想。本研究提出了一种基于 Chan 和 Vese 方法(“无边缘活动轮廓”,IEEE Trans. Image Process. 10, 266-277(2001))的主动轮廓模型方法,旨在考虑到高水平的统计不确定性(噪声),并处理 PET 图像中通常存在的肿瘤摄取异质性。

方法

在提出的方法中,通过引入新的输入图像来修改 Chan-Vese 公式中的拟合项,包括使用各向异性扩散滤波(ADF)的原始图像的平滑版本和图像的轮廓波变换。利用 ADF 进行图像平滑的优点是,它可以避免模糊物体的边缘,并保持区域内的平均活性,这对于准确的 PET 定量非常重要。此外,由于增强肿瘤与背景的比率(TBR),将图像的轮廓波变换纳入拟合项使得能量函数在引导曲线朝向物体边界方面更加有效。通过基于肿瘤异质性和 TBR 水平达成明确共识,对能量函数参数进行了正确的选择。这种谨慎的参数选择导致对异质病变的适当处理。该算法使用模拟体模和临床研究进行了评估,其中分别提供了地面实况和组织学,以便对分割结果进行准确的定量分析。该技术还与之前报道的几种图像分割技术进行了比较。

结果

使用三个评估指标,包括空间重叠指数(SOI)、平均相对误差(MRE)和平均分类误差(MCE),对结果进行了定量分析。虽然对于某些数据集,该方法的性能与其他方法类似,但总体而言,该算法优于所有其他技术。在包含九个数据集的最大临床组中,与表现最佳的算法相比,所提出的方法将 SOI 从使用最佳算法获得的 0.41±0.14 提高到 0.54±0.12,并将 MRE 从 54.23±103.29 降低到 0.19±16.63,MCE 从 112.86±69.07 降低到 60.58±18.43。

结论

与其他代表性分割技术相比,所提出的分割技术在分割体积与地面实况/组织学之间具有最高的重叠,并且相对和分类误差最小,因此,所提出的主动轮廓模型可以实现更准确的 PET 图像肿瘤体积勾画。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验