Bůžková Petra, Lumley Thomas, Rice Kenneth
Department of Biostatistics, University of Washington, Seattle, USA.
Ann Hum Genet. 2011 Jan;75(1):36-45. doi: 10.1111/j.1469-1809.2010.00572.x.
Permutation tests are widely used in genomic research as a straightforward way to obtain reliable statistical inference without making strong distributional assumptions. However, in this paper we show that in genetic association studies it is not typically possible to construct exact permutation tests of gene-gene or gene-environment interaction hypotheses. We describe an alternative to the permutation approach in testing for interaction, a parametric bootstrap approach. Using simulations, we compare the finite-sample properties of a few often-used permutation tests and the parametric bootstrap. We consider interactions of an exposure with single and multiple polymorphisms. Finally, we address when permutation tests of interaction will be approximately valid in large samples for specific test statistics.
排列检验在基因组研究中被广泛使用,作为一种无需做出强分布假设就能获得可靠统计推断的直接方法。然而,在本文中我们表明,在基因关联研究中,通常不可能构建基因-基因或基因-环境相互作用假设的精确排列检验。我们描述了一种在检验相互作用时替代排列方法的参数自抽样方法。通过模拟,我们比较了几种常用排列检验和参数自抽样的有限样本性质。我们考虑了一种暴露与单态和多态性的相互作用。最后,我们讨论了对于特定检验统计量,相互作用的排列检验在大样本中何时将近似有效。